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Abstract—As new advancements in the field of quantum
computing lead to the development of increasingly complex
programs, approaches to validate and debug these programs
are becoming more important. To this end, methods employed
in classical debugging, such as assertions for testing specific
properties of a program’s state, have been adapted for quantum
programs. However, to efficiently debug quantum programs, it
is key to properly place these assertions. This usually requires a
deep understanding of the program’s underlying mathematical
properties, constituting a time-consuming manual task for devel-
opers. To address this problem, this work proposes methods for
automatically refining assertions in quantum programs by moving
them to more favorable positions in the program or by placing
new assertions that help to further narrow down potential error
locations. This allows developers to take advantage of rich and
expressive assertions that greatly improve the debugging experi-
ence without requiring them to place these assertions manually
in an otherwise tedious manner. An open-source implementation
of the proposed methods is available at https://github.com/cda-
tum/mgqt-debugger,

I. INTRODUCTION

Assertions are a powerful tool commonly employed to test
and verify (classical) programs [1|—[3]. They allow developers
to specify properties that should hold at a specific time during
the execution of a program, which are then checked. If an
assertion fails, this typically indicates an error in the program,
as the program’s state differs from what was expected.

With the recent growth of quantum computing, it is
becoming more important to develop efficient debugging
strategies for quantum programs [4]-[13]. Therefore, asser-
tions have similarly started to be employed in quantum
programs [14]-[24]. In many cases, they can drastically reduce
the workload of debugging quantum programs, an otherwise
tedious and time-consuming task due to the exponential size
of the state space of quantum programs, which often requires
developers to compute and track a large number of amplitudes.
By placing assertions within a program, developers can narrow
down the search space for errors: An assertion that fails
indicates that the error must be located in some part of the
program that has already been executed.

However, the amount of information that can be inferred
from an assertion failure strongly depends on the assertion’s
quality. While very general assertions that cover a large part of
the program’s state space have a high likelihood of detecting
the presence of an error, it is often difficult to infer what
exactly caused the error. On the other hand, assertions that
are too specific may not detect errors at all. Furthermore,
the placement of assertions within a program is crucial: If

assertions are placed too late in the program, the information
that can be inferred from them can be limited. Assertions that
fail at the end of a program, for example, can make it difficult
to determine whether the error occurred at the earlier or later
parts of the program.

To efficiently debug a quantum program, it is therefore
crucial to select assertions that maximize the information
that can be inferred from their failures. However, this once
again suffers from similar challenges as discussed above:
The complex nature of quantum programs makes it difficult
to determine the exact state of the program at any given
time, often requiring a deep understanding of its mathematical
properties. Furthermore, the complex interactions between
qubits in quantum programs further obfuscate this state even
to experienced developers. This, in turn, makes it difficult
to determine what assertions should be placed where in a
quantum program.

To address this issue, automated methods to assist devel-
opers in the placement of assertions in quantum programs
are required. While such methods already exist in classical
debugging, such as GoldMine [25] and Daikon [26], two
tools to inspect classical programs and automatically generate
assertions from the corresponding findings, applying similar
methods to quantum programs is often not sufficient to gen-
erate high-quality assertions, as discussed later in

To resolve this limitation, this work proposes methods to
automatically refine assertions in quantum programs. These
methods allow developers to define the intent of a quantum
program through a set of initial assertions, which are then
refined to reduce the required debugging workload. By moving
assertions to earlier locations in the program, these methods
can bring assertions closer to the detected error, making
it easier to find the exact problem cause. Furthermore, by
adding new assertions that inspect the program’s state in
more detail, the search space for errors can be reduced even
further. All proposed methods are available as an open-source
implementation at fhttps://github.com/cda-tum/mqt-debugger.

Evaluations confirm that the proposed methods can signif-
icantly improve the quality of assertions in many quantum
programs, reducing the number of instructions to be inspected
between failing assertions and the error they detect by up
to 61%. Additionally, these evaluation results show that the
proposed methods can be applied to a wide range of quantum
programs, including several well-known quantum algorithms.

The remainder of this work is structured as follows:
provides an overview of the usage of assertions in
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quantum programs. [Section [II| then illustrates the challenges
of manually placing assertions in quantum programs, mo-

tivating the need for automated methods and suggesting a
general idea to circumvent these challenges. then
introduces the proposed methods for assertion refinement in
quantum programs, focusing on the movement and addition of
assertions. evaluates the proposed methods on a set
of quantum programs, showcasing that the proposed methods
can significantly improve the quality of assertions in these

programs. Finally, concludes the work.
II. BACKGROUND

While assertions have been widely used in classical pro-
gramming, recent work has also adapted them for quantum
programs [14]-[24]. However, limitations of quantum mechan-
ics make the implementation of assertions on real quantum
devices more challenging. As measurements of the program’s
state during execution may cause side effects, assertions
typically cannot test for arbitrary states in a straightforward
manner.

Because of this, several approaches have been proposed
to circumvent these limitations or to reduce their impact.
Projection-based assertions, as proposed by Li et al. [20],
are one such approach, allowing specific states to be eval-
vated through projective measurements. Furthermore, Liu et
al. [21], [22] have proposed the use of ancillary qubits to
test certain properties of the program. Alternatively, statistical
assertions, as proposed by Huang et al. [19]], can test the
state of programs by sampling it over repeated executions and
comparing the results with expected values.

While, typically, assertions have to be placed manually in
quantum programs, different strategies that aim to aid in this
process have already been proposed. Ying et al. [27] have
proposed a method to automatically generate invariants for
programs defined in a quantum-while-language, which play
an important role in program verification and can be used
as assertions. Furthermore, Witharana et al. [24] introduced
quAssert, a tool for the automatic generation of quantum
assertions based on the static analysis and random sampling of
quantum programs. However, both of these approaches focus
on the generation of assertions based on the program’s current
structure. While this approach allows for efficient regression
testing after changes are applied to the program, it cannot help
in the detection of errors that are already present. This, once
again, leads to a large manual effort, requiring developers to
investigate the generated assertions and the program’s structure
which is often more complex for quantum programs compared
to their classical counterparts.

This work focuses on three representative types of asser-
tions, frequently used in debugging of quantum programs [[19],
[21], [24]], namely

o superposition assertions checking, whether the given

qubits are in a superposition state,

o entanglement assertions checking, whether the given

qubits are in a fully entangled state, and

o equality assertions checking, whether the given qubits are

in a specified state.

Focusing on these three types of assertions is sufficient
to motivate the problem considered in this work as well as

describing the proposed solutions. The following discussions
and proposals can easily be extended with further types of
assertions. These assertion types can be integrated in quan-
tum programs, such as OpenQASM [28] code, to test the
correctness of the program at any step during execution. An
example usage of each of these assertion types in OpenQASM
code is illustrated at the end of Their specific
implementation is left open, they may be implemented as
statistical assertions on real quantum devices or tested on
classically-simulated quantum computers.

III. MOTIVATION AND GENERAL IDEA

While the use of assertions has proven to be an effective
method to find errors in quantum programs, placing them
manually can be a time-consuming task for developers. This
section illustrates the challenges and limitations of manually
placing assertions. It then devises a general idea to auto-
matically refine assertions in quantum programs to assist
developers in this task.

A. Considered Problem

The quality of assertions employed when debugging quan-
tum programs greatly affects the efficiency at which under-
lying errors can be found. Well-placed assertions can signif-
icantly narrow the potential error location down to a small
region in the program being debugged. However, as quantum
programs grow in size and complexity, determining how to
place assertions well becomes increasingly difficult.

Example 1. Consider that shows a quantum
program applying a three-controlled X gate (CCCX) to the

state |+++) using two ancillary qubits followed by a single-
qubit Z gate. To test for its correctness, several assertions are
employed at the end of the program. The assertion on Line 21
checks whether the ancilla qubits have been uncomputed cor-
rectly by requiring their state to be equal to |00). The assertion
on Line 22 checks whether target [0] is in a superposition
after applying all operations. Finally, the assertion on Line 23
checks whether the qubits g[0] and target [0] are in an
entangled state.

However, this program has an error: On Line 10, the order
of anc[0] and anc[1] is swapped—causing the circuit to
apply incorrect operations. The assertions at the end of the
program are able to correctly determine that an error has
occurred: As the ancilla qubits are not prepared correctly, the
uncomputation will not leave them in the |00)-state, causing
the assertion on Line 21 to fail. Furthermore, as anc[1] is
in a purely |0)-state when executing Line 10, target [0]
will remain unchanged and will not be in a superposition or
entangled with g [0], causing the assertions on Line 22 and
23 to fail. Therefore, running this program and checking the
assertions will result in all three of the assertions failing.

While assertions such as those in indeed allow

developers to identify that there is something wrong with the
program, it is far from obvious what exactly caused the issue.
This is because by the time the assertions are reached at the
end of the execution, the entire program has already been
executed. Therefore, the only possible inference that can be
made is that the error is located somewhere in the program.



qreg q[3];

2| gqreg ancl2];
3| qreg target[1];

// prepare |+++>
h g;
// Bpply CCCX gate
cex q[0], qlll, anc[0];
cex (2], anc[l], anc[0];
cx anc[l], target[0];

3| // Uncompute
cex (2], anc[0], anc[l];
cex q[0], gll], anc[0];

// Apply Pauli-Z gate
z target[0]

// Check
anc[0], anc[l] { 1, O, O, O }
target;

ql0], target([0];

Listing 1: An incorrect implementation of a quantum circuit that applies a
CCCX gate and a Z gate to the qubit target [0]. It uses assertions to check
for correctness.

It is still left to the developer to find the exact location of
those errors, requiring the entire program to be investigated
manually in a time-consuming process.

Instead, placing assertions at earlier locations in the program
may greatly improve the information that can be inferred from
their failures. However, this comes with several challenges.
Due to the complex interactions between individual qubits in
quantum programs, determining the earliest location at which
a given assertion can be placed requires deep understanding
of the program’s underlying mathematical properties. Fur-
thermore, in many cases, complex assertions can be broken
down into simpler parts that provide more information for
debugging. Therefore, the manual refinement of assertions is a
time-consuming task, raising the need for automated methods
to assist developers in this process.

B. General Idea

To assist developers in using assertions in a way that reduces
the required manual debugging effort, we propose multiple
methods to automatically refine existing assertions. First, we
attempt to move existing assertions up the program as far
as possible. Typically, placing assertions earlier in the code
helps reduce the number of error candidates, as the number
of possibly incorrect operations also decreases. This can be
done by defining commutation rules for the different types of
assertions. This way, we can iteratively try to exchange each
individual assertion with its predecessor instruction, as long
as they commute with each other. Depending on the structure
of the program, this approach can move a large number of
assertions efficiently, especially assertions that are placed at
the very end of the program, as is often the case in classical
testing and debugging.

Example 2. Returning to [Example 1| and |[Listing 1| commu-
tation rules can be employed to move all assertions at the
end of the program to earlier positions. First, the Z gate
applied to target [0] on Line 18 clearly cannot influence
the correctness of the equality assertion on Line 21, as it
only considers the qubits anc[0] and anc[1]. Therefore,

the assertion can be moved above this gate without further
concerns. The superposition assertion on Line 22 can be
moved in a similar manner. While it considers the same qubit
that is acted on by Line 18, a single Z gate cannot influence
the correctness of this assertion, as it does not change whether
a qubit is in a superposition state. Furthermore, this assertion
can be moved further up to Line 12, as all instructions below
that do not directly involve target [ 0]. Finally, similar logic
can be applied to the entanglement assertion on Line 23:
A single Z gate cannot influence entanglement between two
qubits. Therefore, this assertion can also be moved to Line 16.

As all moved assertions still fail, since commutativity as-
sures that the assertion results remain the same even after
being moved, this allows developers to reduce the number of
lines that have to be investigated for errors from seven in
the original case to four through the superposition assertion
moved to Line 12.

These commutation rules allow moving assertions to a
more favorable position. This is shown particularly for the
superposition assertion from the previous example, where the
assertion was moved halfway through the whole program.
Moving assertions up using these commutation rules is al-
ready very effective. In fact, as discussed later in
moving assertions can often drastically reduce the number of
instructions that need to be considered during debugging by
bringing them closer to the original error position. However,
more potential remains.

In fact, the debugging experience can be optimized even
further by not only moving assertions but also by automatically
adding new assertions based on the existing ones. Through
static program analysis, certain preconditions of existing as-
sertions can be derived and turned into additional assertions.

Example 3. has shown how the assertion on
Line 23 in can be moved up to Line 16. However,

analyzing the interactions between the individual qubits in
this program and collecting them in an interaction graph
shows that the qubits g[0] and target [0] are indirectly
connected through the qubit anc [1]. Therefore, we can infer
that target [0] and anc[1] must have been entangled
after their last interaction as well. This allows us to place
an additional assertion, assert—ent anc([1], target
on Line 12.

After executing the program and checking the asser-
tions again, the new assertion also fails, as anc[1] and
target [0] are not entangled at this point. Therefore, we
can conclude that the error must have occurred before Line 12
already, reducing the number of lines that have to be inves-
tigated for errors even further from seven to four, similar to
the results obtained by moving the superposition assertion in

Example

Naturally, the commutation rules discussed above may once
again be employed to these newly added assertions to move
them to better positions.

For both of these approaches, a set of initial assertions is
substantially refined—allowing for a much better debugging
experience. This results in a scenario in which the initial
assertions still can be provided at a very general level and



represent the ground truth for the program’s expected behav-
ior as intended by the developer. Then, the above methods
automatically refine them by determining their optimal loca-
tions and defining additional, more detailed assertions when
possible. In some cases, larger assertions may even be replaced
completely by new, more detailed assertions.

IV. PROPOSED METHODS

Based on the general ideas described above, this section
describes the respective techniques in more detail. To this
end, we first discuss how assertions can be moved to earlier
positions and, then, define strategies to add further assertions.
All analyses and operations performed by the proposed meth-
ods can be employed statically, without requiring the quantum
programs to be executed.

A. Moving Assertions

To increase the amount of information that can be deduced
from failing assertions and, therefore, minimize the manual
workload for debugging quantum programs, we attempt to
move assertions to earlier locations in the program. As an
assertion can only be moved above instructions that cannot
influence its outcome, this method defines a set of commuta-
tion rules for all assertion types. Each assertion is iteratively
compared with its predecessor instruction. If any commutation
rule states that the assertion and its predecessor instruction
commute, the assertion is moved above its predecessor. This
process is repeated, until an instruction is reached that does
not commute with the assertion.

Due to the different scopes of the assertion types, com-
mutation rules may differ in strictness, depending on what
type of assertion they apply to. In this work, we propose five
commutation rules to be employed to move assertions. These
rules can either apply generally to any type of assertion or be
related to specific assertion types. More precisely:

1) Non-Functional Instructions: Instructions representing
operations that do not affect the current state of the
program—gate definitions, register definitions, and bar-
rier operations—always commute with any type of as-
sertion.

2) Disjunct Target Instructions: Instructions that perform
non-measurement operations on qubits that are not part
of an assertion’s set of target qubits commute with any
type of assertion.

3) (Anti-)Diagonal Instructions: Instructions with opera-
tor matrices that can be represented as diagonal or
anti-diagonal matrices, such as the Pauli operations and
global phase operations commute with superposition
assertions.

4) Single-Qubit Instructions: Any non-measurement in-
struction that is only applied to a single qubit always
commutes with entanglement assertions.

5) Measurement Instructions: Measurement and reset op-
erations lead to a collapse of the state of entangled
qubits. As it is not possible to determine what qubits are
entangled with each other at static time, especially inside
custom gate definitions, any instruction that requires
a measurement does not commute with any type of
assertion.

[barrier qlol, ql1] ] [barrier qlol, ql1] ] [barrier ql0], ql1] ]
(measure qr21 -> cl0] | (neasure ql2] -> cl0] | (neasure ql2] -> clo] |
{cz qlol, ql1] ] [cz qlo0l, ql1] ] [cz qlol, ql1] ]
[x qlo] ] [x qlo] ] [x qlo] ]ﬁ(
(cx at21, ql3) ) (ex 021, ql3] ) cx q[2], ql3] )
{assert—sup qlol, ql1] ] [assert—ent qlol, ql1] ] [assert*eq qlol, ql1] {...} ]

Fig. 1. Applications of the commutation rules for the three different types of
assertions. The superposition assertion can be moved up by three instructions,
while the entanglement and equality assertions can be moved up by two and
one instructions, respectively.

Example 4. shows the application of the commutation
rules introduced above for the three types of assertions. Using
the commutation rules, it can be shown that the superposition
assertion on the left commutes with the three instructions
directly above it: The CX gate above it does not apply to
any of the qubits used in the assertion. Due to Rule it
therefore commutes with any type of assertion. Furthermore,
both the X and the CZ gates can be represented by a diagonal
or anti-diagonal operator matrix, thus, the assertion can also
be moved above these instructions, as stated by Rule

Similarly, the entanglement assertion in the middle of|
commutes with the CX gate above due to Rule 2] once again.
While it also commutes with the single-qubit X gate above
due to Rule W} it does not commute with the two-qubit CZ
gate. Therefore, the entanglement assertion can only be moved
above its first two proceeding instructions.

Lastly, Rule 2| once again applies to the equality assertion at
the right of [Fig. 1} but no commutation rules exist that allow
it to be moved above the remaining instructions. Because of
this, it has to remain above the CX instruction.

In all three cases, Rule 5| prevents the the assertions from
being moved above the measurement instruction, even if the
target qubit g [2] is not considered by the assertion. Because
of this, the assertions can also not be moved up further above
the barrier instruction, even though Rule [I| would apply to it,
as moving assertions is stopped, once the first non-commuting
instruction is encountered.

B. Adding Further Assertions

The second proposed method to refine assertions is the
addition of new assertions. To this end, we propose two
approaches: Interaction-based and State-Separation-based ad-
dition of assertions. Both approaches aim to add new assertions
to the program based on existing assertions initially provided
by the developer. The newly added assertions typically have
more limited scopes that improve the debugging experience
by narrowing down potential errors further.

The following provides more details on the proposed meth-
ods and discusses in what situations they can be applied.

Interaction-based Addition of Assertions: By statically an-
alyzing the interactions of individual qubits in a quantum pro-
gram, we first generate an interaction graph. illustrates
this process for a simple program. For each gate acting on
multiple qubits, an edge is added to the interaction graph
between the qubits used in this instruction. Furthermore, the
interaction graph stores the location of the instruction that
created this edge.

Based on an interaction graph, any entanglement assertion
applied to two qubits, g4 and gp can then be refined, by



1| qreg ql5]1;
2|h ql[0];
sl cx ql0l, ql1];
ilcx ql1l, ql2];
cx ql1], ql3];
6| cx q[4] s q[S];
7 qlol, ql4];

Fig. 2. A quantum program that generates a 5-qubit GHZ state and the
interaction graph constructed by the proposed method. In Line 6, control and
target have been swapped to induce an error in the program that is detected
by the assertion on Line 7. The edges on the interaction graph are labled with
the line number of the instruction that created them.

investigating the sub-graph that connects these two qubits
with each other on the interaction graph. If this connection is
determined by a single path m = (¢xr,, ¢ry, --; G, ) Such that
gr, = qa and ¢, = gp, then new entanglement assertions
can be added, enforcing that ¢, and ¢, , are entangled with
each other for all ¢ € [1,n — 1]. These assertions can then be
inserted after the instructions that added the edge between ¢,

and ¢, , to the interaction graph.

Example 5. shows a simple program and the interac-
tion graph generated from it. The assertion on Line 7 tests
whether the qubits g[0] and g[4] are in an entangled
state. Due to the error introduced in Line 6, where control
and target qubits have been swapped, this assertion will fail.
The proposed Interaction-based method to add assertions finds
the sub-graph (qo,q1,qs3,q4) that connects both qubits of
the assertion with each other. Based on this sub-graph, it
will add the assertions assert—-ent gq[0], g[l] after
Line 3 and assert—-ent q[0], qg[3] after Line 5. Run-
ning the program again reveals that both of the new assertions
pass, indicating that the error must have occurred between
Lines 5 and 7, successfully narrowing down the range of
possible errors to the single line that contains the error.

State-Separation-based Addition of Assertions: The number
of target qubits considered by an assertion typically influences,
how likely it can be moved to earlier positions using the
methods described above. As an instruction applied to any
of these target qubits may possibly prevent the assertion
from being moved up further, it is beneficial to reduce the
number of target qubits used by any assertion, as long as this
does not influence the general correctness of the assertion.
The State-Separation-based method aims to achieve this by
splitting existing equality assertions into smaller assertions,
each considering only a subset of the original target qubits.

This is achieved by first investigating the state vector
enforced by the assertion and determining all qubits that are
separable from it. For each of these qubits, a new equality
assertion is added that only considers this singular qubit.
This allows developers to formulate general equality assertions
without needing to consider the aspect of minimizing their
scopes, as the proposed method will handle this automatically.

Example 6. Consider the simple excerpt of a quantum pro-
gram in that performs the uncomputation step for
three ancillary qubits that have been used in previous parts
of the program. The assertion at the end of the program
checks whether the ancillary qubits have been uncomputed
correctly and returned to the state |000). However, due to an

slex anc (0], gql0];
( anc[0] {1, 0 }) €]

cx gq[l], anc[1l];
( anc[1l] { 1, 0 }) <«

cx gq[2], anc[2];
( anc([2] {1, 0 }) «——
anc { 1, o0, 0, 0, O, O, O, O } —

Listing 2: The uncomputation procedure for three qubits in some quantum
program. When uncomputing anc[0], the target and control qubits are
swapped, leading to an error detected by the assertion at the end of the
program. The assertions given in parentheses on Lines 4, 6, and 8 have been
added by the State-Separation-based method of adding assertions.

error in uncomputing anc [0], uncomputation is performed
incorrectly and the assertion fails. While this failed assertion
indicates an error in the uncomputation procedure, it does
not provide any information on which qubit exactly the error
occurred. Due to the CX gate directly above the assertion that
involves anc [2], this assertion cannot be moved further up.

The State-Separation-based method of adding assertions can
be employed to assist in this situation. As the state |000) is
separable, three new assertions can be added, each requiring
only one of the ancillary qubits to be in the state |0).
These assertions can then be moved to the positions after the
respective CX gates. Running the program again reveals that
the first newly added assertion fails already, indicating that
the error occurred during its uncomputation.

V. EVALUATION

To evaluate the improvements obtained from employing the
proposed assertion refinement methods, all proposed methods
have been implemented as part of an open-source debugging
library available at https://github.com/cda-tum/mqt-debugger.
Based on the resulting implementation, thorough evaluations
have been conducted whose results are summarized in this
section.

A. Experimental Setup

To generate a set of benchmarks, we used 6 representative
quantum algorithms from the MQT Bench library [29] each
with 5 instances between 4 and 8 qubits as well as between
10 and 500 lines of code. For each of the programs, we added
appropriate assertions to the end of the circuitsﬂ On the one
hand, we added assertions to check the equality of the final
state of the program with a reference state, which had been
generated from classical simulations of the respective circuits.
On the other hand, we added entanglement assertions to check
the entanglement of qubits at the end of the program based on
an analysis of its final state. As some of the programs do not
result in an entangled state, adding entanglement assertions to
the end of these programs is not applicable, which is why we
only added equality assertions to these programs. This leaves
a total of 19 test programs for entanglement assertions and 30

'Due to space limitations and because both techniques proposed in
are applicable to them, we only focus on entanglement and equality
assertions in the following. However, we also conducted evaluations based
on superposition assertions, whose results follow a similar trend as those
for the entanglement assertions. All results are available in the open-source
implementation.



https://github.com/cda-tum/mqt-debugger

TABLE I
THE AVERAGE REDUCTION OF LINES BETWEEN THE INTRODUCED ERROR AND THE FIRST ASSERTION DETECTING IT USING THE PROPOSED METHODS.

Entanglement Assertions
Moving

Equality Assertions

Algorithm Class | Adding and moving Moving | Adding and moving
Deutsch-Jozsa N/A N/A 15.6% £ 12.2% 61.1% £ 27.5%
GHZ State Preparation 53.3% £ 11.6% 58.6% + 8.4% 0.0% + 0.0% 0.0% £+ 0.0%
Graph State Preparation 23.9% + 19.4% 49.2% + 19.6% 14.8% + 6.0% 14.8% + 6.0%
Grover Search 16.7% £+ 12.1% 16.7% + 12.1% 2.7% + 2.8% 20.1% £ 25.1%

Quantum Fourier Transform
Quantum Phase Estimation

10.0% + 1.0%
N/A

15.0% + 5.8%
N/A

12.0% + 12.4%
16.1% + 18.7%

12.0% £ 12.4%
44.0% £ 30.5%

for equality assertions. These generated programs act as the
ground truth.

To test the effectiveness of the proposed methods, we
created faulty versions of the benchmark programs by ran-
domly modifying single instructions. For single-qubit gates,
the instruction has been removed. For multi-qubit gates, the
first and last qubits involved in the gate have been swapped.
Repeating this process ten times and removing instances where
the modifications did not alter the program’s state (such as
when swapping control and traget of a CZ gate), we obtained
a total of 87 and 194 erroneous programs for entanglement
and equality assertions, respectively.

B. Evaluation Results

summarizes the results on the effectiveness of the
proposed methods for moving and adding assertions in reduc-
ing the number of lines that have to be inspected for errors
in quantum programs. Each row lists the relative reduction in
the number of instructions that need to be considered between
failing assertions and the error they detect. The individual
columns represent the results for moving assertions (as pro-

posed in[Section IV-A)) as well as the combination with adding
new assertions (as proposed in [Section IV-B)), respectively ap-
plied to the entanglement and equality assertions of the tested
quantum programs. Results are averaged for all instances of a
particular quantum algorithm with the purpose of identifying
trends in the performance of the proposed methods based on
the characteristics of the considered quantum programs. Cases
where no entanglement assertions are applicable are marked
in the table. All results were obtained with negligible time
overhead with respect to the number of instructions in the
programs.

C. Discussion

Looking at the results obtained for entanglement assertions,
one can clearly see the significant improvements achieved
by the proposed methods, especially for programs that re-
quire the entanglement of multiple qubits. For GHZ State
Preparation, more than half of the lines between a failing
assertion and the introduced error can already be neglected
after just moving the assertions. When additionally adding
new entanglement assertions, this improvement is increased
to an average of 58.6%. For Graph State Preparation, the
improvement from the creation of new assertions is even more
significant as it pushed the reduction in the number of lines
from 23.9% to 49.2%.

For equality assertions, even more promising improvements
can be observed when adding and moving assertions. This is
because the commutation rules employed to move equality

assertions are stricter than those for entanglement assertions.
Thus, the proposed methods for equality assertions perform
particularly well when quantum programs do not require
complex entanglement structures over multiple qubits, as cor-
responding assertions can be separated more easily in this
case. As a demonstration of that, the number of lines to be
considered in the Deutsch-Jozsa programs can be reduced by
an average of 61.1%.

Notably, the result show that the proposed methods com-
plement each other well. In many cases, if one of the methods
only provides limited improvements, the other method can be
applied to achieve a more significant result. Overall, this eval-
uation confirms that the proposed methods can significantly
improve the otherwise tedious and time-consuming manual
debugging effort by greatly reducing the number of lines that
have to be inspected for errors in negligible runtime. In a
large number of cases, more than half of the lines that would
otherwise have to be considered for manual debugging can be
neglected.

VI. CONCLUSION

In this work we proposed several methods for the auto-
mated refinement of assertions in quantum programs, im-
plemented as part of an open-source framework available
at https://github.com/cda-tum/mqt-debugger. Given a set of
initial assertions, the proposed methods employ different
commutation rules to move them to better positions in the
program. Additionally, by analyzing the provided assertions
as well as the program’s structure, we proposed strategies
to add new assertions that can inspect the program’s state
in more detail. We evaluate the proposed methods on a set
of quantum programs with known errors, showing that the
proposed methods can significantly improve the quality of
assertions in these programs. This allows developers to take
advantage of qualitative assertions automatically, shielding
them from an otherwise tedious and time-consuming manual
task.
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