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Abstract—Trapped-ion quantum computers are a promising
platform, offering high-quality qubits with long coherence times
and high-fidelity gate operations. The Quantum Charge Coupled
Device (QCCD) architecture provides a scalable blueprint by
leveraging the ability to shuttle ions between distinct zones.
However, realizing such architectures in practice requires soft-
ware support to manage ion movement across multi-zone layouts.
In this work, we propose a compilation strategy for QCCD
architectures with multiple processing zones located outside a
grid-type memory zone. Unlike previous approaches that treat
processing zones as black-boxes, our method explicitly models
their structural constraints, enabling optimized ion movement
to and through them. It combines qubit partitioning with
dependency-aware gate selection to reduce inter-zone shuttling
while enabling simultaneous gate execution. We implemented the
method in an open-source tool and empirically demonstrated its
effectiveness across several QCCD layouts, laying a foundation
for the compilation of multi-zone trapped-ion systems.

I. INTRODUCTION

In recent years, quantum computing has made remark-
able progress in scaling and improving available hardware.
Large-scale quantum computing promises transformative po-
tential for cryptography [1], optimization [2], and quantum
simulations [3]. As these research efforts shift from proto-
typical implementations to more scalable architectures, transi-
tioning beyond the Noisy Intermediate-Scale Quantum (NISQ)
era becomes the central goal. Achieving reliable large-scale
quantum computation will require further substantial progress
in not only hardware but also in developing the necessary
software to operate, design, and build new devices.

Alongside superconducting [4], neutral atom [5], [6],
and recent candidates such as optical quantum comput-
ers [7], trapped-ions stand out due to long coherence times,
high-fidelity gates, and the ability to shuttle ions, which
enables flexible qubit connectivity while minimizing additional
wiring. In particular, the Quantum Charge Coupled Device
architecture has shown promise by leveraging ion movement
to employ multiple optimized zones in scalable designs.

QCCD-based devices have already been experimentally
demonstrated [8]–[10] and experiments on QCCD processors
have shown promise for fault-tolerant quantum computing.
For instance, [11] has demonstrated how logical error rates
can be brought below physical error rates through efficient
encoding and error correction on a QCCD device.

Despite these advances, significant challenges remain in
orchestrating quantum operations across increasingly complex
QCCD systems. Designing scalable QCCD architectures re-
quires efficient and automated ion-shuttling schedules that
minimize decoherence and operational overhead, especially
when multiple processing zones are incorporated. While prior

work has addressed shuttling between single zones and fo-
cused on shuttling within the memory zone, the integration and
coordination of multiple processing zones introduce additional
constraints and orchestration complexity.

In this paper, we address these challenges by presenting a
comprehensive compilation strategy tailored to QCCD devices
with multiple external processing zones. Unlike approaches
that treat these zones as black-boxes, we explicitly model
their internal structure. Our compilation framework integrates
qubit partitioning with dependency-aware gate selection, re-
ducing the need for shuttling between processing zones and
promoting parallel gate execution. We implement our strategy
in an open-source compilation tool as part of the Munich
Quantum Toolkit (MQT) [12] at https://github.com/cda-tum/
mqt-ion-shuttler and demonstrate its efficacy through empiri-
cal evaluations across several representative QCCD layouts.

The remainder of this paper is structured as follows: Sec-
tion II provides background information; Section III details
the general idea of the compilation framework; Section IV
elaborates on the shuttling methods; Section V presents the
orchestration strategy; Section VI describes empirical evalua-
tions; and Section VII concludes the paper.

II. BACKGROUND

To provide the background for this work, this section
reviews the principles of trapped-ion quantum computing and
the Quantum Charge Coupled Device architecture, highlight-
ing the aspects most relevant to shuttling-based architectures.

A. Trapped-Ion Quantum Computing

Trapped-ion quantum computers utilize individual ions as
qubits, confining them via electromagnetic fields [13], [14].
A common setup used in industrial settings is known as the
Paul trap, in which ions are held in a potential generated
by a combination of radio-frequency and quasi-static electric
fields. By integrating these fields into surface electrode traps,
it becomes possible to realize increasingly complex layouts.

A key advantage of trapped-ion technology lies in the ability
to physically shuttle ions between different locations within
the trap. Unlike many other quantum computing platforms that
rely on fixed wiring or geometric layouts for qubit connectiv-
ity, trapped-ion devices can move qubits as needed, effectively
providing all-to-all connectivity. This greatly simplifies con-
nectivity requirements and can reduce the hardware overhead
necessary for large-scale quantum processors. However, the
act of moving ions must be carefully orchestrated to minimize
decoherence and avoid scheduling overhead.
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Fig. 1: Illustration of a QCCD device and its corresponding graph abstraction

B. Quantum Charge Coupled Device (QCCD) Architecture

The QCCD architecture leverages ion shuttling to build
scalable, modular trapped-ion processors [15]. Since the ions
are able to move around in the system, the QCCD architecture
proposes to partition the trap into specialized zones optimized
for different stages of quantum computation: Processing Zones
(PZs) for high-fidelity gate operations, Memory Zones (MZs)
where ions are stored to protect them from decoherence
while idle, Measurement Zones for efficient state readout,
and Loading Zones for introducing new ions into the system.
Under this model, ions shuttle among these zones as required
by a quantum algorithm, e.g., starting in the memory-zone for
storage, moving to a processing-zone for gate operations, and
then returning once they have completed their gate. To make
full use of this potential, future devices may use junctions
to connect linear regions and form two-dimensional (2D)
architectures. Due to its concept, a dedicated MZ would not
only be shielded from noise but also from control elements
such as laser pulses, which limits its operational ability.
Consequently, ions within a 2D MZ usually cannot simply
swap positions and must rather be rearranged.

Example 1. As a concept of a future 2D QCCD device, see
the architecture illustrated in Figure 1a. Below the chip, a
linear region is highlighted, capable of holding up to three
ions (orange). The electrical control elements confining the
ions are shown in blue. On the right, the corresponding
control elements forming a processing zone (PZ) are depicted,
connected via a Y-junction.

Effectively managing these constraints to minimize ion mo-
tion is crucial for reducing overall runtime and mitigating the
impact of decoherence. Recent device prototypes demonstrate
the use of multi-zone capabilities [9], [10], yet scaling up
to large qubit numbers increases the complexity of moving
between zones and efficiently exploiting their potential.

The compilation strategy proposed in this paper ad-
dresses exactly these challenges by orchestrating ion shuttling
across multi-zone QCCD systems. In particular, we focus
on QCCD architectures comprising an MZ structured as a
two-dimensional grid and multiple external PZs modeled as
linear trap regions. In the following, we consider the shuttling
between the MZ and PZs since these are the zones we expect
to interact the most while executing a quantum circuit.

III. GENERAL IDEA

The promise of scalable quantum computing using QCCD
architectures relies on the ability to efficiently manage ion
movement across increasingly complex device layouts. As
architectures incorporate multiple specialized zones, the com-
pilation challenge shifts from merely scheduling gates to
orchestrating between computation, shuttling, and resource
allocation across distributed areas of the device. Efficiently ex-
ecuting a quantum circuit on a QCCD device requires not only
efficient shuttling within zones but also coordinated movement
between multiple zones, all while maximizing parallel gate
execution whenever circuit dependencies permit.

Previous work has mainly focused on optimized movement
within smaller systems and specific trap geometries [16]–[22].
Addressing larger architectures, [23] introduced efficient shut-
tling compilation within a grid-type MZ. However, that work
was limited by its connection to only a single PZ for pro-
cessing quantum gates. Moreover, shuttling within the PZ was
treated as a black-box operation, neglecting the internal struc-
ture and specific constraints of moving ions into and out of it.
Managing the simultaneous operation of multiple distinct PZs,
each with its own internal shuttling and operational constraints,
introduces significant orchestration complexity. Our approach
addresses these challenges with a compilation framework
tailored to QCCD architectures featuring a grid-type MZ and
multiple PZs. Instead of treating PZs as black-boxes, we
explicitly model them as linear trap regions connected at the
memory grid boundaries

This framework integrates three core components:
1) Memory Zone Shuttling: We retain efficient cycle-based

shuttling schemes for ion movement within the MZ [23].
2) Shuttling through Processing Zones: For PZ-related

movement through linear regions, we introduce and
model path-based shuttling, as detailed in Section IV.

3) Orchestration Strategy: Crucially, we implement a novel
compilation strategy (Section V) to coordinate all
inter-zone shuttling using qubit partitioning and gate
commutativity to select favorable gates for each PZ.

By combining explicit modeling of multiple PZs with an
orchestration layer that manages dependencies and enables
parallelism, our approach offers a holistic solution for compil-
ing quantum computations onto realistic QCCD devices and
lays the groundwork for efficiently utilizing next-generation
trapped-ion processors.
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Fig. 2: Comparison of cycle-based shuttling within the MZ and path-based shuttling through a linear PZ.

IV. SHUTTLING

Efficient shuttling remains the key task in compiling QCCD
devices. This section introduces the core shuttling techniques
used in this work, on which the next section builds to orches-
trate multi-zone shuttling.

A. Shuttling in the Memory Zone Grid
Movement within the main MZ, structured as a grid con-

nected by X-junctions, utilizes the cycle-based shuttling ap-
proach previously developed in [23]. We briefly summarize
the key concepts here.

The MZ architecture is represented as an undirected graph
G = (V,E), where the set of edges E = {e0, . . . , ek}
correspond to linear trap segments capable of holding ions,
and nodes V represent junctions (major nodes) or intermediate
points within linear regions (minor nodes).

Example 2. A corresponding graph representation of a
two-dimensional QCCD device is given in Figure 1b. Since
the device can hold three ions in each linear region, the graph
consists of three edges in between junctions.

Moving multiple ions simultaneously along their shortest
paths toward a PZ often leads to conflicts, as ions cannot
directly swap positions within the MZ. To address this, the
cycle-based approach leverages the grid topology. Conflicts
are avoided by constructing closed loops (cycles) from graph
edges that include both the shortest paths of target ions and
any blocking ions. In one time step, all ions on a cycle are
rotated forward by one position along the cycle’s direction.
This enables target ions to advance while simultaneously
moving blockers aside without complex backtracking. Grid ar-
chitectures naturally offer many rectangular loops, supporting
simple cycle construction. Multiple cycles can be executed in
parallel per time step, provided they do not overlap, i.e., share
a junction or edge. The selection of cycles to execute in case
of conflicts is determined by the priority queue generated by
the orchestration layer. The concept of the priority queue is
explained in Section V. For further details on the cycle-based
algorithm, the interested reader is referred to [23].

B. Shuttling through Linear Processing Zones
While cycles work well within the MZ grid, movement

into, within, and out of PZs requires a different approach. Our
architecture retains the concept of a shielded MZ, connected to

PZs via dedicated paths outside the grid. Crucially, instead of
treating PZs as black-boxes, we explicitly model them as linear
trap regions. To realize the connection and enable directed
movement, we utilize Y-junctions as the interface between the
MZ and the linear PZs. While more complex PZ interface
designs are conceivable, this topology represents a minimal
yet functional model incorporating one-way entry and exit
paths and an explicit linear processing region. By introducing
additional junction nodes into the entry and exit paths, their
length is now also considered in the graph representation.

To schedule the shuttling through these linear zones, we
introduce a path-based approach, that can be seamlessly in-
corporated into the scheduling of the cycle-based approach.

Movement Towards and Into the Processing Zone: When
the orchestration strategy (Section V) targets an ion for a
specific PZ, and its calculated next move within the MZ would
place it onto the linear entry path leading to that PZ, the
shuttling mechanism switches from cycle to path generation.

1) A directed path is selected from the ion’s current edge
along the linear entry path to the target PZ.

2) In one time step, all ions on this path (including the
target ion) are shifted one edge forward.

3) Ions can be pushed directly into the PZ edge, provided
the PZ is not at its capacity limit.

Movement Out of the PZ: Unlike in [23], multiple PZs
may now compete for access to the MZ grid. These exit paths
must therefore be integrated into the orchestration scheme
(Section V), which then decides which of the paths are
scheduled.

1) To exit a PZ, a suitable unoccupied edge within the MZ
is first identified as a target.

2) A Breadth-First Search (BFS) is initiated from the MZ
junction connected to the PZ’s linear exit path to locate
the nearest free edge.

3) Once found, a directed path is constructed from the ion’s
current edge through the MZ to the target.

4) As with entry paths, all ions along this exit path are
shifted one edge forward.

This ensures ions exiting a PZ reach a clear destination in
the MZ. Depending on MZ congestion, locating a free edge
and completing the move may take multiple time steps.

Example 3. Consider the configuration in Figure 2. In Fig-
ure 2a, three ions attempt to move but are blocked in the MZ,
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Fig. 3: Compilation steps

prompting the construction of three cycles to clear the way.
In Figure 2b, an ion is trying to enter the entry to the PZ. To
make room for the ion, a path is constructed to the PZ edge.
To move ions out of the PZ edge, the path leading from the
PZ edge to the free edge e73 in the MZ is used.

Constraints: A key constraint for both entry and exit paths
of a PZ is that movement may be temporarily blocked. During
quantum gate execution, access to the corresponding PZ is
restricted for the duration of the gate. The orchestration layer
must account for these timings when scheduling shuttling.
Conflicts can also arise if multiple PZs attempt to use over-
lapping paths, e.g., exiting into the same MZ region. As with
cycles, such conflicts are resolved by the orchestration strategy
based on priority (see Section V). Scheduling must also respect
PZ capacity limits. If a PZ is at maximum capacity, an ion
attempting to enter via the entry path will be blocked unless
an ion simultaneously exits the PZ.

V. ORCHESTRATING MULTI-ZONE SHUTTLING

Efficient use of a QCCD architecture with multiple PZs
requires a compilation strategy that goes beyond simple gate
scheduling. It must orchestrate ion movement between the
shared MZ and multiple PZs, respecting circuit dependencies
and architectural constraints while maximizing parallel gate
execution. The proposed approach achieves this by integrat-
ing two key components: (A) strategic qubit partitioning to
minimize shuttling between PZs, and (B) dependency-aware
gate selection using a Directed Acyclic Graph (DAG) for each
PZ. This combination allows the compiler to make informed
decisions that balance costly inter-zone shuttling with the goal
of maximizing parallel processing.

A. Qubit Partitioning
The first step aims to reduce the overhead from moving

ions between PZs. Since PZ connections lie at the boundaries
of the memory grid, shuttling between them is typically
more time-consuming than waiting for access to an occupied
PZ. To minimize such movement, we begin by partitioning
the circuit’s qubits across available PZs. As only one gate
per ion can occur per timestep and single-qubit gates do
not introduce dependencies on other qubits, we focus on
efficiently scheduling two-qubit gates. Specifically, we aim to
group frequently interacting qubits into the same PZ. This is
achieved by constructing an interaction graph, where nodes
represent qubits and weighted edges capture the number of
two-qubit interactions. A repeating bisection strategy based
on the Kernighan–Lin (KL) algorithm [24] is then applied:
starting with all qubits in one set, we iteratively bisect the
largest partition until reaching the desired number of PZs
or until further splitting is not possible. The KL algorithm
heuristically minimizes the cut size of the interaction graph,

reducing the number of inter-zone edges and thereby shuttling.
Simultaneously, repeating bisection ensures balanced partition
sizes across PZs.

Example 4. Consider the quantum circuit in Figure 3a. In
the case of two available PZs, the proposed strategy focuses
on the single two-qubit gate acting on qubits q0 and q1. The
two ions representing these qubits are mapped to the first PZ,
while q2 will be scheduled to the second PZ.

This partitioning assigns each qubit a PZ, which guides all
subsequent scheduling. However, the KL partitioning might
still result in a two-qubit gate acting on ions whose PZs differ.
In such cases, the gate itself is dynamically assigned to the
PZ that minimizes the combined estimated shuttling cost for
bringing both required ions to that specific PZ. This ensures
that even cross-partition gates are handled efficiently.

B. DAG-based Gate Selection
With partitioning providing a high-level qubit-to-PZ assign-

ment, we next determine the gate execution order, respecting
dependencies while promoting parallelism. To do this, we
convert the quantum circuit into a Directed Acyclic Graph
(DAG) using Qiskit [25], where nodes represent gates and
edges indicate dependencies. The DAG exposes the front
layer—gates without preceding dependencies. These gates
are mutually commutative and can, in principle, execute in
parallel, assuming ion and PZ availability.

Building upon the gate selection strategy from the
single-zone setting [23, Sec. IV], which selects the single
gate with the closest ions, we extend this concept to multiple
PZs. For each PZ, we consider all gates in the current DAG
front layer that are assigned to it, either because their single
qubit was partitioned to that PZ, or because it was determined
to be the optimal PZ for a two-qubit gate as described in
Section V-A. From this candidate set, we select the best gates:
the ones whose required ions are currently closest to their PZ.

Example 5. Consider the DAG in 3b. Given the scenario
in Example 4, we established the partitioned mapping:
{PZ1: {q0, q1}, PZ2: {q2}}. The initial front layer containing
nodes {0: (rz on q0), 6: (rx on q1), 11: (rz on q2)} is
highlighted in Figure 3b. Accordingly, PZ1 considers the gates
of nodes 0 and 6. Let the ion representing q0 (for Node 0) be
at distance 5 and the ion representing q1 (for Node 6) be at
distance 10 from PZ1, then the rz gate of node 0 is selected
for PZ1. Since PZ2 considers only the gate of node 11, the rz
gate on q2 is selected for PZ2.

Based on the DAG, a priority queue is constructed for each
PZ to resolve conflicts and determine which ions to shuttle
forward. For a detailed explanation of the priority queue,
see [23, Sec. VI]. This concurrent selection enables the parallel
use of all PZs whenever dependencies allow.



C. Orchestration Algorithm
The combination of partitioning and DAG-based gate selec-

tion yields the following algorithm:

Algorithm 1: Orchestration Algorithm
Input: Quantum circuit and initial ion locations
Output: A schedule S (shuttling operations, gate

executions, and required time steps)
1 Initialize:
2 - Partition the ions (mapped to qubits) into sets.
3 - Create the DAG D = (V,E).
4 - Let S ← ∅.
5 - Let t← 0 (current time step).
6 while V (D) ̸= ∅ do
7 Identify front layer F :

F = { v ∈ V (D) |∄u ∈ V (D) with (u, v) ∈ E};
8 foreach PZ pi do
9 Identify candidates Cpi from F ;

10 Select the best gate gpi from Cpi ;
11 Let Gdone ← ∅ (set of completed gates);
12 while Gdone = ∅ do
13 Perform Shuttling Step:
14 Create shuttling operations (cycles and paths);
15 Update ion positions;
16 Add shuttling operations to S;
17 foreach PZ pi do
18 if ions of gpi are present in pi then
19 Start gate execution of gpi ;
20 if gpi finished its gate time then
21 Add gpi to Gdone;
22 t← t+ 1;
23 Update DAG: Remove nodes of gates in Gdone;
24 return S

This iterative process dynamically adapts the schedule to
the evolving ion state and the gates exposed by the DAG.
It systematically balances the trade-off between minimizing
shuttling through partitioning and maximizing parallelism via
concurrent, DAG-aware gate selection, providing a robust
compilation strategy for multi-zone QCCD architectures.

VI. EMPIRICAL EVALUATION

In this section, we evaluatete the performance of our pro-
posed compilation strategy on multi-zone QCCD architectures.
We first evaluate the effectiveness of our DAG-based gate
selection technique, demonstrate broad applicability through
a comprehensive study of various architectures and different
quantum circuits, and finally investigate how multiple PZs
impact performance relative to architectures with a single PZ.

A. Experimental Setup
To evaluate our approach, we use a suite of quantum

benchmarks varying in size and structure:
• “GHZ”; prepares the Greenberger–Horne–Zeilinger state,
• “QFT”; scheduling the quantum Fourier transform, and
• “Random”; using a random circuit of up to four-qubit

gates which is as deep as wide.
MQT Bench [26] circuits are translated via pytket [27] to the

native RZZ, RZ, RY, and RX gates used in Quantinuum QCCD
devices [10]. Each benchmark is compiled and scheduled
using a range of QCCD architectures. The MZ is modeled
as a grid-type array connected to one or more linear PZs

via Y-junctions. Following the approach of [23], the grid is
described by four values m,n, v, h: an m×n grid-graph with v
(h) ions between vertical (horizontal) junctions. For example,
the graph in Figure 1b corresponds to 4, 4, 3, 3.

In our evaluations, up to four PZs are connected to the mem-
ory grid. Each PZ can hold up to two ions to allow two-qubit
gates, but note that this constraint can be relaxed if future
hardware supports larger linear regions. In some research
setups, two-qubit gates approach single-qubit speed [28], while
commercial systems often show a 10–100× slowdown. We
assume junction traversal takes one time step while shuttling
along linear paths is instantaneous. To reflect that gate times
are typically faster than junction traversal—without overly
penalizing two-qubit operations—we model single-qubit gates
as one time step and two-qubit gates as three [29]. These
values are configurable in the open-source tool.

All experiments were run on an Intel(R) Xeon(R) W-1370P
CPU (@ 3.22GHz) with 32GiB RAM using Python 3.8.10.
Each benchmark was repeated five times with different seeds
to reduce bias from initial ion placement. For all experiments,
we initially filled each MZ completely with ions.

B. Impact of DAG-Based Gate Selection

Figure 4 compares the average execution time (in time steps)
achieved with and without the DAG-based gate selection strat-
egy introduced in Section V-B, evaluated across four represen-
tative architectures of varying sizes. For this comparison, we
executed the QFT circuit on each architecture on all available
qubits. While both evaluations used the qubit partitioning step
described in Section V-A, the version without DAG-based
selection simply used the input circuit as a fixed sequence
of gates and moved through it gate-by-gate. The scatter plot
illustrates the average total time steps required (left vertical
axis), while the corresponding bars highlight the percentage
improvement (right vertical axis) provided by the DAG-based
method. Across all tested benchmarks, the DAG-based scheme
consistently reduces the required time steps by between 52%
and 88%. This demonstrates how dependency-aware selection
of upcoming gates, rather than naively moving through the
input circuit, can efficiently mitigate unnecessary shuttling.

C. Overall Performance Across QCCD Layouts

Next, we evaluated the broader applicability of our method
by compiling our full set of benchmarks (QFT, random, and
GHZ) for multiple QCCD layouts, as summarized in Table I.
Each cell in the table reports the average number of time
steps T to complete all gate executions and ion movements
for a given circuit with G gates and a specified architecture,
along with the CPU time required by our compiler. The
architectures are varied in terms of grid size (m, n, v, h)
and number of PZs, with each architecture holding N ions.
The results show that the proposed approach reliably produces
valid shuttling schedules across a wide range of QCCD
configurations, including both compact and larger grid-type
MZs. The implementation is also able to produce efficient
shuttling schedules for a single PZ, as well as for multiple
PZs. Furthermore, our implementation is able to efficiently
schedule both single- and multi-PZ setups, up to four external
PZs. We note that while the tool supports configurations with
more than four PZs, we limited this evaluation to a maximum
of four to maintain consistency across our comparisons.



TABLE I: Results of the Empirical Evaluation
Architecture GHZ QFT Random

Number of PZs m n v h N G T̂ tCPU [s] G T̂ tCPU [s] G T̂ tCPU [s]

Single PZ

3 3 1 1 12 220 277.4 1.5 1039 1337.2 10.3 1340 3553.2 48.1
4 4 1 1 24 460 603.2 6.3 4217 5476.6 139.3 6252 17 601.4 1029.4
3 3 3 3 36 700 890.6 16.1 10033 12 639.8 741.6 14914 36 413.6 4466.3
5 5 1 1 40 780 1023.2 18.0 12315 15 566.2 1112.1 17770 45 354.8 6689.8
3 3 5 5 60 1180 1580.2 50.8 23759 30 353.2 4222.1 40435 52 463.7 11 003.5
4 4 3 3 72 1420 1854.2 74.5 30623 38 622.2 7149.4 59899 90 722.9 15 669.0

Two PZs

3 3 1 1 12 220 216.4 1.2 1039 849.4 8.3 1340 2477.6 37.2
4 4 1 1 24 460 492.2 5.0 4217 3383.5 98.4 6252 11 056.6 735.6
3 3 3 3 36 700 768.8 13.0 10033 8419.8 692.7 14914 23 465.6 3248.0
5 5 1 1 40 780 819.4 13.7 12315 9641.2 894.8 17770 26 733.4 4547.1
3 3 5 5 60 1180 1393.0 45.5 23759 24 496.5 3510.9 40435 45 179.1 10 956.7
4 4 3 3 72 1420 1585.8 64.4 30623 25 096.1 5362.7 59899 61 621.1 13 290.9

Three PZs

3 3 1 1 12 220 186.8 0.8 1039 626.8 7.1 1340 2130.0 35.5
4 4 1 1 24 460 461.4 5.4 4217 2538.6 82.3 6252 9579.0 697.4
3 3 3 3 36 700 722.6 13.1 10033 7052.8 507.1 14914 21 296.6 3334.1
5 5 1 1 40 780 810.8 13.6 12315 7059.4 662.5 17770 23 341.0 4341.3
3 3 5 5 60 1180 1361.6 47.1 23759 22 292.6 3167.7 40435 42 501.2 10 672.2
4 4 3 3 72 1420 1538.8 68.8 30623 21 033.2 4694.2 59899 48 511.8 12 043.2

Four PZs

3 3 1 1 12 220 162.2 1.4 1039 520.6 5.1 1340 1712.5 33.9
4 4 1 1 24 460 424.8 5.2 4217 2028.2 73.4 6252 7088.0 691.9
3 3 3 3 36 700 708.6 13.1 10033 6514.8 487.3 14914 19 355.0 3355.3
5 5 1 1 40 780 738.4 14.2 12315 5842.3 596.7 17770 15 803.0 4358.1
3 3 5 5 60 1180 1360.8 52.1 23759 21 705.7 3828.6 40435 40 630.0 10 023.9
4 4 3 3 72 1420 1520.8 73.4 30623 18 591.1 4369.5 59899 40 822.3 10 871.0

(3,3,1,1)

(12 ions) (4,4,1,1)

(24 ions) (3,3,3,3)

(36 ions) (5,5,1,1)

(40 ions) (3,3,5,5)

(60 ions) (4,4,3,3)

(72 ions) (4,4,5,5)

(120 ions)

Architecture (sorted by number of ions)
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Fig. 4: Improvement in time steps executing “QFT” of using
the DAG-based Gate Selection step described in Section V-B.

D. Impact of Multiple Processing Zones
Finally, Figure 5 illustrates how increasing the number of

PZs (from one to four) affects the overall schedule length
when executing a QFT circuit across several architectures. The
y-axis shows the percentage improvement in total execution
time relative to the single-zone baseline. As anticipated, adding
PZs yields execution time improvements—up to 50–60%—
depending on device geometry and circuit structure. These
gains result from parallel gate execution, which helps eliminate
wait times and reduce memory grid congestion. However, the
benefit of each additional PZ diminishes, indicating reduced
returns beyond the initial increase in parallelism.

Collectively, these results demonstrate the applicability and
effectiveness of our compilation approach for multi-zone
QCCD systems while providing first insights into the benefits
of multiple available PZs to reduce overall execution runtimes.

VII. CONCLUSIONS

In this work, we presented a comprehensive compilation
strategy for QCCD systems with a grid-based MZ and mul-
tiple connected PZs. Our approach models PZs as linear
regions connected via Y-junctions, moving beyond previ-
ous black-box abstractions. We integrated path-based shut-
tling through PZs into an open-source, cycle-based method
for conflict-free transport within the MZ. Central to our
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Fig. 5: Improvement in time steps executing “QFT” for an
increasing number of PZs.

method is an orchestration layer that combines strategic
qubit partitioning with dependency-aware, concurrent gate
selection, enabling efficient operation assignment, reduced
inter-zone shuttling, and increased parallelism. The corre-
sponding tool is available open-source at https://github.com/
cda-tum/mqt-ion-shuttler. Empirical evaluations across three
circuits and representative QCCD layouts demonstrated the
effectiveness of the proposed approach. The results con-
firm significant reductions in total execution through the
dependency-aware gate selection compared to naively schedul-
ing the input quantum circuit. This allowed us to also assess
the impact of scheduling to multiple processing zones. This
work provides a robust and extensible framework for compil-
ing quantum circuits onto multi-zone QCCD architectures, lay-
ing a foundation for leveraging future hardware advancements.
Future research includes more realistic noise models, dynamic
qubit partitioning, and scheduling error-correcting codes.
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