
Towards Supporting QIR
Steps for Adopting theQuantum Intermediate Representation

Yannick Stade

yannick.stade@tum.de

Technical University of Munich

Germany

Lukas Burgholzer

lukas.burgholzer@tum.de

Technical University of Munich

Munich Quantum Software Company

Germany

Robert Wille

robert.wille@tum.de

Technical University of Munich

Munich Quantum Software Company

Germany

Abstract
Intermediate representations (IRs) play a crucial role in the software

stack of a quantum computer to facilitate efficient optimizations

for executing an application on hardware. One of those IRs is the

Quantum Intermediate Representation (QIR), which builds on the

classical LLVM compiler infrastructure. In this article, we outline

different approaches to how QIR can be adopted. This exploration

culminates in a demonstration of what it takes to turn an existing

quantum circuit simulator into a QIR runtime and that such a tran-

sition is less daunting than it might seem at first. We further show

that switching to QIR does not entail any performance deficits com-

pared to the original simulator. On the contrary, the presented steps

effortlessly allow adding support for arbitrary classical control flow

to any classical simulator. We conclude with an outlook on future

directions using QIR. The implemented QIR runtime is available

under https://github.com/munich-quantum-toolkit/core.

CCS Concepts
• Hardware→ Quantum computation.

Keywords
quantum computing, intermediate representation, compiler, run-

time, software stack

1 Introduction
Since the famous results of Shor [29], the promise holds that quan-

tum computers can offer an exponential speedup over classical com-

puters for specific problems. Many applications [13, 15, 24, 31, 37]

have since been developed to exploit this potential computational

power [3, 5]. However, physical implementations of quantum com-

puters still need to catch up and are far from being useful for the

aforementioned applications, with only a few realizations of toy

examples on real hardware devices reported, e. g., [4, 32]. Neverthe-

less, the development of real quantum computers has seen rapid

progress over the past years. Breakthroughs in different technolo-

gies, such as superconducting qubits [12, 16], trapped ions [21], and

neutral atoms [4, 20], have demonstrated significant advancements

in the number of qubits and their reliability.

However, hardware is only one part of the story: Successfully

realizing applications on quantum computers requires a sophis-

ticated stack of software tools to transform a classical problem

description into a quantum solution, to optimize the resulting (hy-

brid) quantum-classical program, and, finally, to execute it [6, 8].

SC Workshops ’25, St Louis, MO, USA

2025.

Since real quantum computers are not capable of executing arbi-

trary instructions directly, a compiler with various transformation

and optimization passes is needed [19, 27, 28, 30, 33, 36]. These

passes are essential to minimize the overhead introduced by the

compilation process and to maintain a high fidelity of the resulting

quantum program. Many of the problems involved in this process

are computationally hard to solve, making the development of such

a compiler or a general compiler infrastructure challenging.

Intermediate representations are a key component of any com-

piler, enabling the seamless combination of various passes and

transformations. Huge parts of the quantum computing ecosystem

have come to rely on the OpenQASM format, proposed initially

as version 2 [10] and refined in version 3 [11], by IBM. The for-

mat started as a low-level quantum assembly language and has

since evolved into a more general-purpose quantum programming

language, adding classical elements.

In contrast, the Quantum Intermediate Representation (QIR), ini-

tially proposed byMicrosoft [25], takes a different approach. It aims

to reuse as much as possible of the existing classical compiler infras-

tructure, namely the LLVM compiler framework [17], and augment

it with quantum instructions. Despite its promises, the adoption of

QIR in the quantum computing ecosystem remains low, especially

outside the realm of industrial players like Microsoft, Nvidia, or

Xanadu that have the resources and the expertise to develop and

maintain such a compiler infrastructure.

In this article, we aim to shine a light on the challenges and

opportunities that come with adopting QIR in the quantum com-

puting software ecosystem. This should help readers to develop a

better understanding of the various options to support QIR in their

software tools. In particular, we detail the steps that are necessary

to turn an existing quantum circuit simulator into a QIR runtime.

In this regard, we show how to implement the LLVM IR interface

defined by QIR for a simulator that is written in C++. Meanwhile,

we elaborate on the different resource management strategies sup-

ported by QIR and how to deal with them in a classical runtime

for quantum computing. The complete code is publicly available

in open-source as part of the Munich Quantum Toolkit (MQT, [36])

under https://github.com/munich-quantum-toolkit/core.

Overall, the described steps show that it does not take much to

turn an existing simulator into a QIR runtime. The evaluation com-

pares the new approach with the current method of parsing QASM

files at runtime. Benchmark results indicate that both approaches

yield similar performance, with no clear advantage in terms of

runtime. However, when using QIR, one can take advantage of

the entire compiler infrastructure that exists around LLVM IR. As

https://github.com/munich-quantum-toolkit/core
https://github.com/munich-quantum-toolkit/core

SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA Yannick Stade, Lukas Burgholzer, and Robert Wille

OPENQASM 2.0;

include "qelib1.inc";

qreg q[2];

creg c[2];

h q[0];

cx q[0], q[1];

measure q -> c;

|0⟩ 𝐻

|0⟩

.

.

.

%q = call ptr @__quantum__rt__qubit_allocate_array(i64 2)

%r = call ptr @__quantum__rt__array_create_1d(i32 8, i64 2)

%0 = call ptr @__quantum__rt__array_get_element_ptr_1d(ptr %q, i64 0)

%q0 = load ptr , ptr %0, align 8

call void @__quantum__qis__h__body(ptr %q0)

%1 = call ptr @__quantum__rt__array_get_element_ptr_1d(ptr %q, i64 1)

%q1 = load ptr , ptr %1, align 8

call void @__quantum__qis__cnot__body(ptr %q0, ptr %q1) ; reuse %q0

%r0 = call ptr @__quantum__qis__m__body(ptr %q0)

%2 = call ptr @__quantum__rt__array_get_element_ptr_1d(ptr %r, i64 0)

store ptr %2, ptr %r0, align 8

%r1 = call ptr @__quantum__qis__m__body(ptr %q1)

%3 = call ptr @__quantum__rt__array_get_element_ptr_1d(ptr %r, i64 1)

store ptr %3, ptr %r1, align 8
.
.
.

call void @__quantum__rt__qubit_release_array(ptr %q) ; release all resources
.
.
.

Figure 1: The quantum “Hello World” program, i. e., a circuit to create a Bell state (bottom left), expressed in OpenQASM 2.0 (top
left) and QIR with dynamically allocated qubits (right). The corresponding lines of code in each fragment are linked. For more
details, see also Ex. 1 and 2.

a result, the execution of hybrid programs, where classical and

quantum operations are interleaved arbitrarily, comes for free.

Throughout the article, we assume the reader to be familiar with

the basics of quantum computing and quantum circuits. We refer

the reader to the literature [22] for an in-depth introduction.

2 An Abridged History of Quantum
Intermediate Representations

First, this section briefly reviews the history of quantum intermedi-

ate representations and how quantum computations are typically

represented. While certainly not exhaustive, these recollections

provide a starting point for understanding the different approaches.

2.1 OpenQASM 2:
Quantum Computation ≈ Quantum Circuit

The Open Quantum Assembly (OpenQASM) language was initially

proposed in version 2 by IBM in 2017 [10] to describe quantum

experiments to be executed on their publicly available quantum

computers. It is a low-level language that describes quantum com-

putations in a straightforward manner, i. e., as an enumeration of

quantum instructions. Additionally, it supports measurements, re-

sets, (limited) feedback, and gate subroutines. Since its inception,

OpenQASM has been widely adopted throughout the quantum com-

puting community and is heavily used as a text-based exchange

format for quantum circuits.

Example 1. The “Hello World” of quantum computing, the creation

of a Bell state, is expressed in OpenQASM 2.0 on the top left in Fig. 1.

After loading the quantum (standard) library, the code declares a

quantum register with two qubits and a classical register with two

bits. Then, a Hadamard-gate is applied to the first qubit, followed by

a CNOT-gate controlled by the first qubit and targeting the second

qubit. Finally, both qubits are measured.

2.2 OpenQASM 3:
The Need for Hybrid Quantum Programs

While OpenQASM 2 provided a great starting point, it has become

apparent over time that some degree of classical logic and control

flow, including conditionals and loops that might depend on the

results of quantum measurements, is desirable for writing more

complex quantum programs. For near-term applications, this allows

to describe variational quantum algorithms, where the quantum

circuit is part of a larger classical optimization loop. For long-term

applications, classical feedback is essential for quantum error cor-

rection [9, 23]. As a consequence, OpenQASM has been extended

to version 3 [11], which integrates classical logic and control flow.

Fundamentally, OpenQASM started as a quantum assembly lan-

guage and step-by-step evolved into a more general-purpose quan-

tum programming language by adding classical elements on top. It

builds on its strong adoption in the quantum computing commu-

nity and the corresponding compiler infrastructure previously built

around OpenQASM 2. At the same time, the extension to Open-

QASM 3 requires implementing traditional compiler optimizations

on top of the IR, such as loop unrolling, constant propagation, or

constant folding to generate efficient executable code for the target

hardware. Given how ubiquitous OpenQASM is in the quantum

computing community, this extension is a natural and sensible step

to enable more complex programs. However, it also requires the

reimplementation of concepts that are already established and used

for decades in classical compilers. This discrepancy has led to the

development of QIR, which is discussed next.

2.3 QIR: Adding Quantum to the Classical
In contrast to OpenQASM, the Quantum Intermediate Represen-

tation (QIR, [25]) adopts a different strategy: It builds upon an

established classical compilation infrastructure, augmenting it with

quantum instructions. This approach allows QIR to utilize the ex-

isting classical compiler infrastructure, thereby inheriting its opti-

mizations and transformations for classical code without additional

Towards Supporting QIR SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA

Figure 2: A Venn diagram showing the different profiles of
QIR. The base profile is the most restrictive one and only
uses very few instructions of the LLVM IR. QIR in its whole
extent is a proper superset of LLVM IR.

effort. Specifically, QIR extends the classical IR used in the compiler

framework LLVM [17]. It uses this IR to implement various compiler

optimizations on this IR before, eventually, compiling it to target-

specific assembly for execution. As such, LLVM IR can express

arbitrary classical program logic, including functions, conditionals,

and loops. However, it cannot express quantum computations by

itself. To this end, QIR, as initially proposed by Microsoft, defines

a set of additional functions that can be used to express quantum

computations with the LLVM IR.

Example 2. The relevant lines of a QIR program that represent the

same circuit as in Ex. 1 are shown on the right in Fig. 1.
1
Initially, an

array %q of two qubits and another array %r to fit two measurement

results are allocated. Note here, that the result type is an opaque pointer

according to the QIR specification. Hence, we specify the element size

to be 8 bytes to fit a pointer to the results.

For the application of the Hadamard-gate, the first qubit is extracted

from the qubit array. Since, %1 is the pointer to the first element in the

array and not the qubit reference itself, we dereference this variable

and store the qubit reference in %q. Hereafter, the Hadamard-gate is

applied to the qubit. In the next block of code, we also extract the second

qubit %q1 and perform a CNOT-gate on both. Afterward, the state of

both qubits is measured and stored in the initially allocated array %r.

Finally, after the results got processed by classical code or recorded in

the output of the program, all resources are released—something that

cannot be done explicitly in OpenQASM.

In order to speed up the adoption of QIR, multiple restrictions

to QIR, so-called profiles have been defined that limit the expres-

siveness of QIR.
2
In its most restrictive form, the base profile only

allows a sequence of quantum instructions that ends with the mea-

surement of all qubits, which effectively makes it very similar to

OpenQASM 2. The more permissive adaptive profiles allow the suc-

cessive transition to fully support all features contained in LLVM IR.

In its full generality, QIR is a proper superset of LLVM IR that builds

on top of all the existing tooling and optimizations available for

LLVM IR. For an illustration of the relation between the different

profiles, see Fig. 2.

1
Note, that we chose to use modern LLVM syntax with opaque pointers here, as

opposed to the legacy syntax used in the initial QIR specification.

2
https://github.com/qir-alliance/qir-spec/tree/main/specification/under_developm

ent/profiles (visited on 03/03/2025)

3 Adopting QIR: Quo Vadis?
The proposal of QIR is both logical and appealing: It makes sense

to avoid reinventing the wheel and to build on decades of classical

compilation expertise, especially, since quantum computations will

inherently involve classical input and produce classical output.

However, the adoption of QIR in the quantum computing software

stack is a challenging task: What does it actually mean to adopt

QIR in the stack? How do we transform these quantum-classical

programs so that they can be executed? What about the actual

execution? In the following, we discuss two fundamentally different

directions of adopting QIR, where the first of both is subdivided

into parsing and transforming QIR programs.

3.1 Parsing QIR Programs
In order for a quantum program to be executed, it must be trans-

formed so that it complies with all the restrictions imposed by

the hardware. Tools responsible for this transformation need to

be able to accept the input quantum program and transform it ac-

cordingly [19, 27, 28, 30, 36]. When using QIR, tools may either

receive the program as a text file containing QIR code or as an in-

memory representation of the program, such as an Abstract Syntax

Tree (AST). The former approach requires a parser that can turn

the text-based representation into some in-memory representa-

tion. This in-memory representation can either be the QIR AST, in

which case LLVM can be used, or another custom and tool-specific

IR. For a custom IR, the parser’s (and, in fact, also the exporter’s)

complexity depends on the profile of QIR to be supported.

Example 3. For the straight-line quantum programs, it suffices to

iterate over the lines to construct an in-memory representation of

the resulting quantum circuit. For example, when parsing the QIR

program from Ex. 2, the parser would need to track the assignment of

variables (i. e., %q, %0, %1, . . .) to their values to infer the respective qubit

that is passed to a quantum instruction. The instructions themselves

can be matched with a simple pattern and corresponding actions can

be taken to gradually build up the quantum circuit.

On the one hand, the advantage of a custom parser is that one

can avoid the dependency on LLVM, which should be a carefully

considered decision because of the substantial size and complexity

of the module. LLVM as a dependency can significantly increase the

build and maintenance overhead of a project. On the other hand,

when not using LLVM, one has to reimplement all the optimiza-

tions and transformations that are already provided for LLVM IR

“for free”—similar to the ongoing development of tools for Open-

QASM 3. Additionally, when using a custom IR, one is limited

to the capabilities of that existing IR. If that IR is not expressive

enough to capture all the details of a quantum program, the QIR

program cannot be fully translated and, hence, the tool cannot be

used on these programs. As a consequence, the IR would have to

add support for representing and handling all the concepts that QIR

introduces, which might be a further significant effort in addition

to reimplementing the optimizations and transformations.

https://github.com/qir-alliance/qir-spec/tree/main/specification/under_development/profiles
https://github.com/qir-alliance/qir-spec/tree/main/specification/under_development/profiles

SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA Yannick Stade, Lukas Burgholzer, and Robert Wille

3.2 Transforming QIR Programs
As a continuation of the first direction, after loading the quantum

program, multiple passes in the software stack optimize and trans-

form the program to meet all constraints imposed by the hardware.

For the remainder of this section, we assume that the program is

represented as a QIR AST in memory.

The support for QIR can, again, be realized in two different ways:

Either the QIR is transformed directly, or the program is transpiled

into another custom IR, transformed, and transpiled back into QIR.

While the latter approach enables quick adoption of QIR, it carries

the same deficits as parsing the text-based QIR file into a custom IR.

For tools to support QIR directly, the AST of a QIR program must

be handled and transformed. While this might be simple enough for

the base profile, it becomes more complex for the adaptive profiles,

which could have arbitrarily complex classical code in-between

quantum instructions. This approach, however, has the advantage

that the tool can directly take advantage of existing optimizations

and transformations that are already implemented for QIR—the

core motivation of an IR in a compiler.

Example 4. One use case of classical for-loops is the application of

a gate to multiple qubits. The following QIR snippet shows a simple

for-loop that performs a Hadamard gate on the qubits with hardware

addresses 0, . . . , 9.

%i = alloca i32 , align 4
store i32 0, ptr %i, align 4 ; int i = 0
br label for.header

for.header:
%1 = load i32 , ptr %i, align 4
%cond = icmp slt i32 %1, 10 ; i < 10
br i1 %cond , label %body , label %exit

body:
%2 = load i32 , ptr %i, align 4
call void @__quantum__qis__h__body(

ptr inttoptr (i64 %2 to ptr)) ; h(qi)
%3 = load i32 , ptr %i, align 4
%4 = add nsw i32 %3, 1 ; i++
store i32 %4, ptr %i, align 4
br label %for.header

exit: . . .

Since QIR builds on the LLVM infrastructure, it is straightforward to

unroll any loops with statically known bounds in the QIR program.

Hence, a quantum optimization pass does not have to handle the

for-loop, but only sees the ten individual Hadamard gates that are

applied to the qubits.

While the previous sections discussed handling and transform-

ing QIR programs themselves, the question remains how these

transformed programs are eventually executed.

3.3 Executing QIR Programs
In contrast to the type of support for QIR discussed so far, the

execution of QIR programs is fundamentally different. Another

direction of adopting QIR enables the execution of QIR programs

and can either be seen as a complement to the previously discussed

options or as an orthogonal approach.

A file that contains LLVM IR bytecode can be executed directly

with the lli tool provided by the LLVM project. This tool reads

the bytecode and interprets it on the fly. Furthermore, the compiler

clang, also part of the LLVM project, can compile the bytecode to

machine code and emit an executable.

Despite clang and lli being already able to parse QIR programs,

when compiling or interpreting those files individually without any

additional definitions, the tools will raise an error for every quantum

instruction they encounter. The raised error message will point out

that a definition for the respective function cannot be found. This

is logical, as the quantum instructions are not part of the LLVM IR

standard and, hence, clang and lli do not know how to handle

them. To overcome this issue, and be able to compile QIR programs

to executables, we have to provide the missing definitions for the

quantum instructions.

Example 5. One example that takes this approach is the Catalyst

Quantum Runtime implemented by Xanadu that incorporates their

classical quantum circuit simulator Lightning [1], which is part of

PennyLane [2]. Every function, such as @__quantum__qis__h__body, is

implemented so that it modifies the internal state of the simulator to

reflect the application of the respective gate. Note that these functions

need not be implemented in LLVM IR, as this would be quite cumber-

some. Instead, the definition of the QIR functions can be provided as an

implementation (written in C/C++, Rust or other kinds of languages)

of a C interface, which is then compiled to LLVM just as any other

regular classical program code.

This approach is orthogonal to the previous two options as it

only concerns the implementation of quantum instructions, while

the actual program structure is handled by the runtime. To this end,

this approach is perfectly suited for integrating classical simulation

techniques with QIR, especially ones developed in a language that

compiles to LLVM, such as C/C++ or Rust. The resulting binaries

can be maximally optimized by the LLVM compiler infrastructure,

which is a significant advantage.

4 Realization of a Classical QIR Runtime
In the following, we demonstrate how an existing quantum cir-

cuit simulator can be turned into a QIR runtime—illustrating the

steps necessary to support QIR. For this demonstration, we use

the quantum circuit simulator based on decision diagrams [34,

35] that is bundled with MQT Core [7] as part of the Munich

Quantum Toolkit (MQT [36]). The resulting implementation of the

QIR runtime is also publicly available as open-source software as

part of MQT Core under https://github.com/munich-quantum-

toolkit/core.

4.1 Implementing the Quantum Instructions
The specification of QIR defines a couple of functions to deal

with data structures used by the QIR runtime. For example, there

are dedicated functions to create and manipulate arrays of qubits

and measurement results (see also Sec. 4.3). Additionally, the run-

time provides special handling for strings and big integers. How-

ever, the core part of the QIR runtime is the quantum instruction

set (QIS). The name of those functions follows the following pat-

tern: @__quantum__qis_<gate>__body, where <gate> is the name of the

respective quantum gate. For example, the function that imple-

ments the rotation around the x-axis is declared as declare void

@__quantum__qis__rx__body(ptr, double), where the first parameter is

the qubit reference and the second one is the rotation angle.

Any implementation of the specificationmust provide definitions

for all declarations. The standard way to do that is to implement the

https://github.com/munich-quantum-toolkit/core
https://github.com/munich-quantum-toolkit/core

Towards Supporting QIR SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA

C-API corresponding to the LLVM function signatures defined in

the specification.
3
The following code fragment shows the definition

of the QIR function corresponding to the RX gate.

extern "C" {
void __quantum__qis__rx__body(Qubit* qubit , double phi) {

auto& backend = QIR_DD_Backend :: getInstance ();
backend.apply(qc::RX, phi , qubit);

}
} // extern "C"

The backend is implemented as a singleton class that is accessed

via the static method QIR_DD_Backend::getInstance. The first time this

method is called, the singleton instance is created and initialized.

Afterward, we can forward the application of any quantum gate to

the backend and accordingly modify the quantum state represented

in the runtime. Below, you see an excerpt of the implementation of

the singleton class QIR_DD_Backend that serves as a mediator between

the QIR runtime and the simulator.

class QIR_DD_Backend {
private:

explicit QIR_DD_Backend (); // private constructor
public:

/// Return the unique instance of the backend.
static QIR_DD_Backend& getInstance () {

static QIR_DD_Backend instance;
return instance;

}
// ... other attributes and methods
};

4.2 Handling Dynamic Qubit Allocation
Qubits in QIR are represented as opaque pointers. Thus, a crucial

part of the runtime is to translate between those opaque pointers

and the qubit identifiers used in the simulator. The simulator un-

der consideration uses consecutively numbered unsigned integers

starting from 0 to identify qubits in the underlying state. Hence,

the opaque pointer values of qubits in the QIR program must be

translated to the respective qubit identifiers in the simulator. QIR

offers two qubit management strategies—either via dynamically

allocating qubits or via static addressing. In the following, the man-

agement of dynamically allocated qubits is described. You can find

more details on how to handle static addressing in Sec. 6.1.

First, a definition for the QIR function to allocate a qubit needs

to be provided. Note the surrounding extern "C" declaration of the

function. This is required because we must implement the C inter-

face to finally be able to properly link the runtime with the QIR

code. The extern "C" declaration ensures that this part of the code

is compiled as C code even though it is contained in a .cpp file.

extern "C" {
Qubit* __quantum__rt__qubit_allocate () {

auto& backend = mqt:: QIR_DD_Backend :: getInstance ();
return backend.qAlloc ();

}
} // extern "C"

The above function simply delegates the allocation of a new

qubit to the runtime, which internally maintains a qRegister hash

map of unique addresses and qubit indices as follows. The dynamic

3
The main reason for choosing C for the interface is that C has a well-defined and

stable application binary interface (ABI), which allows the resulting object file to be

properly linked with the LLVM IR code. This, in no way, precludes an implementation

in higher-level languages such as C++ or Rust, as also demonstrated by this article.

qubit addresses are given out in increasing order starting from

MIN_DYN_QUBIT_ADDRESS.

class QIR_DD_Backend {
private:

std:: unordered_map <const Qubit*, size_t > qRegister;
uintptr_t currentMaxQubitAddress =

MIN_DYN_QUBIT_ADDRESS;
size_t currentMaxQubitId = 0;

...
public:

auto qAlloc () -> Qubit* {
auto* qubit =

reinterpret_cast <Qubit*>(currentMaxQubitAddress ++);
qRegister.emplace(qubit , currentMaxQubitId ++);
return qubit;

}
// ... other attributes and methods
};

The actual translation of an instruction’s qubit addresses to the

simulator’s identifiers is delegated to the following function within

the runtime.

template <size_t SIZE >
auto QIR_DD_Backend :: translateAddresses(

const std::array <Qubit*, SIZE >& qubits)
-> std::array <size_t , SIZE > {

// transform opaque qubit pointers to qubit ids
std::array <size_t , SIZE > qubitIds {};
for(size_t i = 0; i < SIZE; ++i) {

qubitIds[i] = qRegister.at(qubits[i]);
}
return qubitIds;

}

In particular, qubit addresses are never dereferenced in this set-

ting, but only used as keys in the hash map. For an alternative

approach, where qubit addresses point to valid memory locations

and the qubit identifiers are stored in the memory, see Sec. 7.

No matter how the address translation is implemented, the run-

time must cope with qubits that might be allocated and deallocated

in the middle of the program execution. This dynamic allocation

might not be necessary for QIR files that follow a certain profile that

explicitly disallows allocation in the middle of the program. E. g.,

the base profile prohibits dynamic qubit allocation entirely and

only allows static addressing (see Sec. 6.1). However, the presented

quantum runtime supports static and dynamic qubit addressing.

As a consequence, the runtime must be able to dynamically adjust

the size of the quantum state in the simulator to accommodate the

qubits that are allocated during the program execution.

For the chosen quantum circuit simulator that is based on deci-

sion diagrams, this enlargement of the quantum state is straight-

forward. The following code fragment sketches this process for

the implemented runtime: The input parameter is the maximum

qubit identifier that is currently needed, e. g., in the application

of a quantum gate. Based on that, the backend checks whether

this identifier is already contained in the current state, and if not,

accordingly extends the state with additional qubits.

auto QIR_DD_Backend :: enlargeState(uint64_t maxQubit)
-> void {

if (maxQubit >= numQubitsInQState) {
const auto d = maxQubit - numQubitsInQState + 1;
numQubitsInQState += d;
dd->resize(numQubitsInQState);
[initalize new qubits in |0⟩-state]

}
}

SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA Yannick Stade, Lukas Burgholzer, and Robert Wille

4.3 Defining Additional Data-Structures
Besides the definition of qubits as pointers to an opaque type %Qubit,

the QIR specification also defines a couple of data structures that are

used by the QIR runtime. This subsection illustrates their realization

in the implemented runtime using the example of the %Array type.

To not leave the array type incomplete, the backend provides the

following definition with attributes that are necessary to implement

all QIR runtime functions related to arrays.

using Array = struct ArrayImpl {
int32_t refcount; // reference count
int32_t aliasCount; // count of aliases
std::vector <int8_t > data; // vector of bytes
int64_t elementSize; // number of bytes per elem.

};

The QIR’s specification enforces the principle of reference count-

ing on classical resources like arrays. For arrays specifically, alias

counting is employed to keep track of read-only references to the

array—the handling of those is omitted here for brevity.

The life-cycle of a classical resource in QIR, and in particular of

an array includes its creation, access, and release. First, the code

snippet below provides the implementation of a one-dimensional

array creation for a given element size s in number of bytes and

the total number of elements n.

Array* __quantum__rt__array_create_1d(
int32_t s, int64_t n) { // s: element 's size

return new Array{1, 0, std::vector <int8_t >(s * n), s};
}

During program execution data should be written and read from

the array. To this end, the function below returns a pointer to

the 𝑖-th element of the array. Using this pointer, the data in the

corresponding element can be accessed or modified.

int8_t* __quantum__rt__array_get_element_ptr_1d(
Array* arr , int64_t i) {

[perform bounds checking]
return &arr ->data[arr ->elementSize * i];

}

At the end, when the array is no longer needed, the associated

memory should be freed to make space for other resources. The

deallocation of classical resources is part of the reference counting

mechanism in QIR. Hence, the function to update the reference

count, frees the associated memory when the reference count de-

creases to zero.

void __quantum__rt__array_update_reference_count(
Array* arr , int32_t k) {

if (arr == nullptr) return;
arr ->refcount += k; // k can also be negative (!)
if (arr ->refcount == 0) delete arr;

}

5 Demonstrating the Runtime’s Functionality
The explanations and code snippets above have, hopefully, given a

rough overview of what it takes to realize a QIR runtime based on

an existing quantum circuit simulator. This section complements

the description of the implementation by providing the results of

running multiple benchmarks with the implemented runtime. This

achievement demonstrates our ability to streamline the process of

connecting quantum and classical systems without reinventing the

wheel.

For the evaluation, we considered five different families of quan-

tum circuits from the MQT Bench quantum circuit benchmark

suite [26]. Those correspond to the first five families listed in Ta-

ble 1 and can be realized using the QIR base profile. Additionally, we

created three other sets of benchmark circuits from theMQTCore li-

brary [36]. Those last three circuit families in Table 1 all make use of

QIR features defined as part of the adaptive profile. More precisely,

they employ intermediate measurements, reuse already measured

qubits, and, in case of the qft-iter and qpeexact-iter circuits,
furthermore contain quantum operations that are conditioned on

previous measurement results.

At the time of writing, neither MQT Bench nor MQT Core di-

rectly produce QIR code. Thus, all circuits were initially created as

OpenQASM 3 programs and subsequently translated to equivalent

QIR programs. During this process, we created two versions of the

QIR files: one that uses dynamically allocated qubits as described in

the implementation section, i. e., Sec. 4.2, and one that uses statically

addressed qubits (see Sec. 6.1).

Before the QIR files can be executed, they must be compiled to

an executable. For this, every QIR file is linked to the implemented

QIR runtime separately and compiled to an executable. Those ex-

ecutables can then be invoked, and their execution time can be

measured. For a comparison between the execution of the QIR files

and the existing MQT simulator, we employed the default simula-

tion capabilities of the MQT to parse and simulate OpenQASM 3

files.

During the evaluation we collected the following metrics:

(1) Compilation Times
(a) of the application to parse and simulate OpenQASM 3 files

(b) of the library containing the QIR runtime (without a spe-

cific QIR file)

(c) of every QIR file using the already compiled library from

Item 1b

(2) File Sizes
(a) of the application from Item 1a

(b) of the OpenQASM files parsed by the application

(c) of the executables compiled from the QIR files

(3) Execution Times
(a) of the application to parse and simulate OpenQASM 3 files

(b) of the QIR executables using the QIR runtime

Note that the application and the library only need to be compiled

once, which is why we record the times of Items 1a and 1b only

once. The results of all experiments, which were executed on a

machine with an Apple M3 chip, 16 GB of RAM, and clang version

16.0.0, are summarized in Table 1.

At the top of the table, we provide the file sizes and compilation

times of the QASM simulator application together with the compi-

lation time for the QIR runtime library. Note that the compilation

of the simulator executable takes more time than the compilation

of the QIR runtime library together with each QIR file. However,

the application only needs to be compiled once and can then be

used to parse and simulate multiple OpenQASM files without re-

compilation, while a separate executable has to be compiled per

QIR file.

Regarding the results of the individual circuits, we first take a

look at the resulting file sizes. For the simulation of QASM files,

Towards Supporting QIR SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA

Table 1: Evaluation Results

QASM simulator executable file size @: 744 kB and compilation time Û: 10.496 s QIR runtime library compilation time Û: 3.028 s

Dynamically Parsing QASM Executing Compiled QIR
Static Addressing Dynamic Addressing

Benchmark #Qubits @ [kB] Â [s] Û [s] @ [kB] Â [s] Û [s] @ [kB] Â [s]

ghz 256 13 0.008 3.828 324 0.013 3.846 346 0.019

512 26 0.028 3.864 349 0.045 3.875 371 0.089

1024 53 0.141 3.911 398 0.201 3.863 420 0.273

2048 111 0.736 3.973 480 0.980 3.937 535 2.340

4096 228 4.412 4.399 662 5.675 4.013 931 6.807

qft 30 12 0.003 3.822 317 0.002 3.849 339 0.002

35 17 0.004 3.873 317 0.004 3.843 339 0.004

40 22 0.005 3.838 317 0.004 3.848 340 0.005

45 27 0.006 3.899 318 0.005 3.866 340 0.005

qpeexact 30 13 0.003 3.825 317 0.003 3.858 340 0.002

35 18 0.007 3.934 318 0.003 3.838 340 0.004

40 23 0.006 3.823 318 0.004 3.867 340 0.004

45 29 0.208 3.919 334 0.005 4.108 340 0.006

random 14 11 0.193 4.175 339 0.218 3.941 344 0.216

15 13 0.713 3.948 339 0.736 3.983 344 0.761

16 14 2.088 3.968 339 2.110 3.917 361 2.151

17 15 18.315 3.905 340 17.703 4.302 362 17.430

18 18 95.679 3.913 340 89.789 4.011 362 90.568

wstate 256 33 0.042 3.863 341 0.049 3.850 363 0.057

512 67 0.165 3.892 382 0.237 4.075 404 0.259

1024 136 0.802 4.274 448 1.004 3.938 486 1.023

2048 282 4.544 4.283 613 5.397 4.033 668 5.709

4096 574 30.504 5.599 920 34.191 4.316 1295 36.063

bv-iter 256 15 0.002 3.830 346 0.002 3.962 347 0.002

512 29 0.003 3.879 371 0.002 3.976 371 0.002

1024 58 0.006 3.952 420 0.003 3.910 437 0.002

2048 117 0.011 4.377 535 0.004 3.863 552 0.004

4096 236 0.020 6.923 750 0.007 4.117 866 0.006

qft-iter 30 22 0.002 3.839 338 0.002 3.881 339 0.001

35 30 0.002 4.265 338 0.002 3.827 339 0.001

40 40 0.003 4.192 338 0.002 3.871 355 0.002

45 51 0.003 3.828 355 0.001 3.865 356 0.002

qpeexact-iter 30 24 0.002 3.822 340 0.002 3.859 341 0.002

35 32 0.003 3.822 357 0.002 3.839 358 0.001

40 42 0.003 3.840 357 0.002 3.844 358 0.001

45 53 0.004 3.883 357 0.002 3.860 358 0.002

Û: Compilation times in seconds (see Item 1) @: Files Sizes in kilobytes (see Item 2) Â: Execution Times seconds (see Item 3)

the application together with the QASM file is required to run the

respective circuit. Hence, we compare the sum of the file sizes of

the application and the QASM file with the size of the compiled QIR

executables. It stands out that for smaller circuits, the compiled QIR

files are significantly smaller. However, for larger circuits, the file

size of the QIR executables increases faster than the file size of the

QASM files. Nevertheless, for all circuits in the evaluation, the size

of the QIR executables remains below the size of the application

and the QASM file together.

With a look at the execution times, all three different settings lead

to similar results.
4
This is hardly surprising, as all of the approaches

are carrying out identical quantum computations, and the majority

of the execution time is spent applying the respective operations to

the current state. Hence, the overhead from parsing the file within

4
One may notice that the qubit ranges and the execution time scales between the

individual circuit families differ wildly. This is a testament to the properties of decision

diagrams, which are used as the data structure for the simulation. Similar to tensor

networks, decision diagrams allow representing certain problem classes much more

efficiently and compactly than an array-based statevector representation by exploiting

structure in the underlying representation. At the same time, they incur a significant

overhead for problem classes that do not offer any benefit for the decision diagram

structure as, e.g., seen in the results for the random circuit family [14].

SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA Yannick Stade, Lukas Burgholzer, and Robert Wille

the application to simulate QASM files is negligible. The execution

times of the QIR files using dynamic and static qubit addresses also

do not differ significantly.

In summary, those results manifest that with manageable effort,

an existing quantum circuit simulator can be turned into a QIR

runtime while maintaining the same performance. This opportunity

opens up a way for fast adoption of the QIR standard with tools

that were previously developed to work with QASM files or similar

intermediate representations. On top of that, one unlocks the ability

to execute arbitrary hybrid classical-quantum programs such as

quantum error correction protocols with classical feedback loops

or dynamic quantum circuits as demonstrated with the iterative

versions of the Bernstein-Vazirani algorithm, the Quantum Fourier

Transform, and the Quantum Phase Estimation algorithm in Table 1.

6 Challenges in Compiling QIR Programs
The integration of a quantum IR like QIR into a compiler infras-

tructure is challenging and comes with a number of open research

questions. Here, we detail two of those challenges.

6.1 Static and Dynamic Qubit Addresses
QIR provides the opaque pointer type %Qubit* for addressing indi-

vidual qubits. In Ex. 2, the qubits were addressed dynamically by

first allocating the respective qubits and retrieving dynamic qubit

addresses that later can be used as arguments to quantum instruc-

tions. In contrast to dynamic addresses, there is also the possibility

to address qubits statically.

Example 6. When addressing the qubits statically instead of dynam-

ically, the circuit from Fig. 1 can be rewritten in QIR in the following

snippet. Especially, the lines for allocating the qubits disappear.

.

.

.
call void @__quantum__qis__h__body(ptr null)
call void @__quantum__qis__cnot__body(ptr null ,

ptr inttoptr (i64 1 to ptr))
call void @__quantum__qis__mz__body(ptr null , ptr null)
call void @__quantum__qis__mz__body(ptr inttoptr

(i64 1 to ptr), ptr inttoptr (i64 1 to ptr))
.
.
.

This type of addressing qubits can be useful when compiling a

quantum program to an executable very close to hardware. In the

end, the hardware only has a fixed number of qubits, and the com-

piler must ensure that the program does not exceed this number.

So while a quantum program can be written with dynamic qubit

addresses, the compiler must at some point assign the program’s

qubits to the hardware’s qubits—a process very similar to register

allocation in classical compilers. At the moment, this distinction be-

tween static and dynamic qubit addresses is not yet fully established

in the QIR community, but it is an important aspect to consider

when integrating QIR into a compiler infrastructure.

In the context of implementing a QIR runtime for a quantum

circuit simulator—as outlined above—dynamic qubit addresses are

the preferred way to address qubits. Most simulators support a

variable number of qubits; the maximum feasible number might

even depend on the input circuit itself, e. g., on the degree of en-

tanglement that is created during its execution. By allocating the

qubits on demand, one can efficiently scale the simulated state to

the required size and save memory if no large state is needed.

To support static qubit addresses, the runtime would have to

infer the number of qubits required for the simulation somehow.

According to the examples in the QIR specification, every func-

tion in a QIR file has an attribute denoting the number of required

qubits by this function. Those attributes can be accessed by compi-

lation passes in the process of compiling the source code into an

executable. However, in our setting, where we just provide the def-

initions of the QIR runtime functions as a C/C++ implementation,

we cannot access those attributes from the QIR files. One can still

allocate qubits on the fly when encountering a new qubit address

that is not yet part of the simulated quantum state (similar to how

this is handled in the runtime implementation evaluated in Sec. 5).

6.2 Hybrid Classical-Quantum Computing
As QIR is a superset of LLVM IR, arbitrarily complex classical com-

putations can be expressed in LLVM IR. Those heavy classical com-

putations are preferably executed on dedicated classical hardware

rather than on the classical co-processor of a quantum computer—if

that is even feasible: The classical co-processor of quantum com-

puters must be very fast, and special-purpose hardware like FPGAs

or ASICs are employed in many such cases. These are incapable of

executing arbitrary classical code, which is also not their purpose.

Consequently, the question of how to decide which part of the code

should be executed on the classical hardware and which part on the

quantum hardware naturally arises for a hybrid classical-quantum

programs that contain quantum as well as classical instructions.

Especially in the realm of error correction, where conditional

gate applications based on intermediate measurements must be

performed on the quantum computer to ensure low latency, the

distinction is more complicated than just offloading only the quan-

tum instructions. At the same time, it must be ensured that the

classical code offloaded to the quantum hardware can be executed

in the required time frame to uphold the coherence of the qubits.

Hence, as long as quantum computers cannot achieve arbitrary co-

herence of the qubits, there will always be programs that describe

an infeasible execution and must be rejected.

7 Conclusions
QIR is one way to bridge the gap between purely classical and

purely quantum computations. As an extension of LLVM IR, it

builds on decades of compiler infrastructure and optimizations. As

outlined in this article, the adoption of QIR can be achieved with

less effort than it might seem at first glance. However, some open

research questions remain to be addressed in the future, especially

in the context of hybrid classical-quantum programs. One frame-

work for exploring solutions to these questions is the Multi-Level

Intermediate Representation (MLIR, [18]), which is a natural choice

for the next step in the evolution of QIR.

Acknowledgements
The authors acknowledge funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation program (grant agreement No. 101001318), and

the Munich Quantum Valley (MQV), which is supported by the

Bavarian state government with funds from the Hightech Agenda

Bayern Plus.

Towards Supporting QIR SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA

References
[1] Ali Asadi et al. Hybrid quantum programming with PennyLane Light-

ning on HPC platforms. (2024). arXiv: 2403.02512.

[2] Ville Bergholm et al. Pennylane: automatic differentiation of hybrid

quantum-classical computations. (2022). arXiv: 1811.04968.

[3] Ethan Bernstein and Umesh Vazirani. 1997. Quantum complexity

theory. SIAM Jour. of Comp. doi: 10.1137/S0097539796300921.

[4] Dolev Bluvstein et al. 2023. Logical quantum processor based on

reconfigurable atom arrays. Nature. doi: 10.1038/s41586-023-06927-

3.

[5] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tappa. 1999.

Tight Bounds onQuantum Searching. InQuantumComputing. (1st ed.).

Wiley. doi: 10.1002/3527603093.ch10.

[6] Lukas Burgholzer, Jorge Echavarria, Martin Schulz, Laura Schulz, and

Robert Wille. 2024. Building Efficient Software Stacks for Quantum

Computers: Experiences from the Munich Quantum Software Stack.

In Int’l Conf. on Quantum Computing and Engineering. IEEE.

[7] Lukas Burgholzer, Yannick Stade, Tom Peham, and RobertWille. 2025.

MQT Core: The backbone of the Munich Quantum Toolkit (MQT).

Journal of Open Source Software. doi: 10.21105/joss.07478.

[8] Lukas Burgholzer et al. 2025. The Munich Quantum Software Stack:

Connecting End Users, Integrating Diverse Quantum Technologies,

Accelerating HPC. (2025). arXiv: 2509.02674 [quant-ph].
[9] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. 2017.

Roads towards fault-tolerant universal quantum computation. Nature.

doi: 10.1038/nature23460.

[10] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gam-

betta. Open Quantum Assembly Language. (2017). arXiv: 1707.03429.

[11] Andrew W. Cross et al. 2022. OpenQASM 3: A broader and deeper

quantum assembly language. ACM Transactions on Quantum Com-

puting. doi: 10.1145/3505636.

[12] Google Quantum AI et al. 2023. Suppressing quantum errors by

scaling a surface code logical qubit. Nature. doi: 10.1038/s41586-022-

05434-1.

[13] Lov K. Grover. 1997. Quantum mechanics helps in searching for a

needle in a haystack. Phys. Rev. Lett., 2. doi: 10.1103/PhysRevLett.79

.325.

[14] Thomas Grurl, Jurgen Fus, Stefan Hillmich, Lukas Burgholzer, and

Robert Wille. 2020. Arrays vs. Decision Diagrams: A Case Study on

Quantum Circuit Simulators. In Int’l Symp. on Multi-Valued Logic.

2020 IEEE 50th International Symposium on Multiple-Valued Logic

(ISMVL). IEEE. doi: 10.1109/ISMVL49045.2020.000-9.

[15] Stuart Harwood, Claudio Gambella, Dimitar Trenev, Andrea Simon-

etto, David Bernal Neira, and Donny Greenberg. 2021. Formulating

and Solving Routing Problems on Quantum Computers. IEEE Trans-

actions on Quantum Engineering. doi: 10.1109/TQE.2021.3049230.

[16] Youngseok Kim et al. 2023. Evidence for the utility of quantum

computing before fault tolerance. Nature. doi: 10.1038/s41586-023-0

6096-3.

[17] C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Int’l Symp. on Code

Generation and Optimization. IEEE Computer Society. doi: 10.1109

/CGO.2004.1281665.

[18] Chris Lattner et al. 2021. MLIR: scaling compiler infrastructure for

domain specific computation. In Int’l Symp. on Code Generation and

Optimization. doi: 10.1109/CGO51591.2021.9370308.

[19] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Map-

ping Problem for NISQ-Era Quantum Devices. In Int’l Conf. on Archi-

tectural Support for Programming Languages and Operating Systems.

ACM. doi: 10.1145/3297858.3304023.

[20] Hannah J. Manetsch, Gyohei Nomura, Elie Bataille, Kon H. Leung,

Xudong Lv, and Manuel Endres. A tweezer array with 6100 highly

coherent atomic qubits. (2024). arXiv: 2403.12021.

[21] S. A. Moses et al. 2023. A race-track trapped-ion quantum processor.

Phys. Rev. X, 4. doi: 10.1103/PhysRevX.13.041052.

[22] Michael A. Nielsen and Isaac L. Chuang. 2010.Quantum Computation

and Quantum Information. (10th anniversary ed ed.). Cambridge

University Press.

[23] Tom Peham, Ludwig Schmid, Lucas Berent, Markus Müller, and

Robert Wille. 2024. Automated Synthesis of Fault-Tolerant State

Preparation Circuits for Quantum Error Correction Codes. (2024).

arXiv: 2408.11894.

[24] Alberto Peruzzo et al. 2014. A variational eigenvalue solver on a

photonic quantum processor. Nature Communications. doi: 10.1038

/ncomms5213.

[25] QIR Alliance: https://qir-alliance.org. 2021. QIR Specification. Ver-

sion 0.1. QIR Alliance: https://qir-alliance.org.

[26] N. Quetschlich, L. Burgholzer, and R.Wille. 2023. MQT Bench: Bench-

marking Software and Design Automation Tools for Quantum Com-

puting. Quantum. doi: 10.22331/q-2023-07-20-1062.

[27] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. 2025. MQT

Predictor: Automatic Device Selection with Device-Specific Circuit

Compilation for QuantumComputing.ACMTransactions on Quantum

Computing. doi: 10.1145/3673241.

[28] Daniel Schoenberger, Stefan Hillmich, Matthias Brandl, and Robert

Wille. 2024. Using Boolean Satisfiability for Exact Shuttling in Trapped-

Ion QuantumComputers. InAsia and South Pacific Design Automation

Conf. doi: 10.1109/ASP-DAC58780.2024.10473902.

[29] P.W. Shor. 1994. Algorithms for quantum computation: discrete log-

arithms and factoring. In Symp. on Foundations of Computer Science.

IEEE Comput. Soc. Press. doi: 10.1109/SFCS.1994.365700.

[30] Yannick Stade, Ludwig Schmid, Lukas Burgholzer, and Robert Wille.

2024. An Abstract Model and Efficient Routing for Logical Entan-

gling Gates on Zoned Neutral Atom Architectures. In Int’l Conf. on

Quantum Computing and Engineering. arXiv: 2405.08068.

[31] Nikitas Stamatopoulos et al. 2020. Option pricing using quantum

computers. Quantum. doi: 10.22331/q-2020-07-06-291.

[32] LievenM. K. Vandersypen,Matthias Steffen, Gregory Breyta, Costantino

S. Yannoni, Mark H. Sherwood, and Isaac L. Chuang. 2001. Experimen-

tal realization of Shor’s quantum factoring algorithm using nuclear

magnetic resonance. Nature. doi: 10.1038/414883a.

[33] Robert Wille and Lukas Burgholzer. 2023. MQT QMAP: Efficient

Quantum Circuit Mapping. In Proc. 2023 Int. Symp. Phys. Des. ACM.

doi: 10.1145/3569052.3578928.

[34] Robert Wille, Stefan Hillmich, and Lukas Burgholzer. 2023. Decision

Diagrams for QuantumComputing. InDesign Automation of Quantum

Computers. Springer International Publishing. doi: 10.1007/978-3-03

1-15699-1_1.

[35] Robert Wille, Stefan Hillmich, and Lukas Burgholzer. 2022. Tools for

QuantumComputing Based on Decision Diagrams.ACMTransactions

on Quantum Computing. doi: 10.1145/3491246.

[36] Robert Wille et al. 2024. The MQT Handbook: A Summary of Design

Automation Tools and Software for Quantum Computing. In Int’l

Conf. on Quantum Software. arXiv: 2405.17543. A live version of this

document is available at https://mqt.readthedocs.io.

[37] Christa Zoufal, Aurélien Lucchi, and StefanWoerner. 2019. Quantum

Generative Adversarial Networks for learning and loading random

distributions. npj Quantum Information. doi: 10.1038/s41534-019-022

3-2.

https://arxiv.org/abs/2403.02512
https://arxiv.org/abs/1811.04968
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1002/3527603093.ch10
https://doi.org/10.21105/joss.07478
https://arxiv.org/abs/2509.02674
https://doi.org/10.1038/nature23460
https://arxiv.org/abs/1707.03429
https://doi.org/10.1145/3505636
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1109/ISMVL49045.2020.000-9
https://doi.org/10.1109/TQE.2021.3049230
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3297858.3304023
https://arxiv.org/abs/2403.12021
https://doi.org/10.1103/PhysRevX.13.041052
https://arxiv.org/abs/2408.11894
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://qir-alliance.org
https://qir-alliance.org
https://doi.org/10.22331/q-2023-07-20-1062
https://doi.org/10.1145/3673241
https://doi.org/10.1109/ASP-DAC58780.2024.10473902
https://doi.org/10.1109/SFCS.1994.365700
https://arxiv.org/abs/2405.08068
https://doi.org/10.22331/q-2020-07-06-291
https://doi.org/10.1038/414883a
https://doi.org/10.1145/3569052.3578928
https://doi.org/10.1007/978-3-031-15699-1_1
https://doi.org/10.1007/978-3-031-15699-1_1
https://doi.org/10.1145/3491246
https://arxiv.org/abs/2405.17543
https://mqt.readthedocs.io
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1038/s41534-019-0223-2

	Abstract
	1 Introduction
	2 An Abridged History of Quantum Intermediate Representations
	2.1 OpenQASM 2: Quantum Computation approximately equals Quantum Circuit
	2.2 OpenQASM 3: The Need for Hybrid Quantum Programs
	2.3 QIR: Adding Quantum to the Classical

	3 Adopting QIR: Quo Vadis?
	3.1 Parsing QIR Programs
	3.2 Transforming QIR Programs
	3.3 Executing QIR Programs

	4 Realization of a Classical QIR Runtime
	4.1 Implementing the Quantum Instructions
	4.2 Handling Dynamic Qubit Allocation
	4.3 Defining Additional Data-Structures

	5 Demonstrating the Runtime's Functionality
	6 Challenges in Compiling QIR Programs
	6.1 Static and Dynamic Qubit Addresses
	6.2 Hybrid Classical-Quantum Computing

	7 Conclusions

