
1

Efficient and Scalable Post-Layout Optimization
for Field-coupled Nanotechnologies

Simon Hofmann Student Member, IEEE, Marcel Walter Member, IEEE, and Robert Wille Senior Member, IEEE

Abstract—As conventional computing technologies approach
their physical limits, the quest for increased computational
power intensifies, heightening interest in post-CMOS technolo-
gies. Among these, Field-coupled Nanocomputing (FCN), which
operates through the repulsion of physical fields at the nanoscale,
emerges as a promising alternative. However, realizing specific
functionalities within this technology necessitates the develop-
ment of dedicated FCN physical design methods. Although
various methods have been proposed, their reliance on heuristic
approaches often results in suboptimal quality, highlighting
a significant opportunity for enhancement. In the realm of
conventional CMOS design, post-layout optimization techniques
are employed to capitalize on this potential, yet such methods
for FCN are either not scalable or lack efficiency. This work
bridges this gap by introducing the first scalable and efficient
post-layout optimization algorithm for FCN. Experimental evalu-
ations demonstrate the efficiency of this approach: when applied
to layouts obtained by a state-of-the-art heuristic method, the
proposed post-layout optimization achieves area reductions of
up to 73.75% (45.58% on average). This significant improve-
ment underscores the transformative potential of post-layout
optimization in FCN. Moreover, unlike existing algorithms, the
method exhibits scalability even in optimizing layouts with over
20 million tiles. Implementations of the proposed methods are
publicly available as part of the Munich Nanotech Toolkit (MNT)
at https://github.com/cda-tum/fiction.

I. INTRODUCTION

WHILE the demand for computational power is expe-
riencing continuous growth, fueled by the expansion

of data centers managing vast digital ecosystems [1] and the
development of large language models that require intensive
processing for training on massive datasets [2], the limits of
Moore’s Law are becoming evident. Furthermore, projections
indicate that, by 2030, the information and telecommuni-
cations sector could account for 51% of global electricity
consumption and 23% of global greenhouse gas emissions [3].
Hence, suitable alternatives to conventional CMOS technolo-
gies are imperative.

A potential solution for the future of green computing at the
nanoscale is Field-coupled Nanocomputing (FCN, [4]), which
operates by leveraging the repulsion of physical fields instead
of electric current. Recently, FCN has received a significant
boost with several breakthroughs in fabrication including
the successful experimental demonstration of a functional
sub-30 nm2 OR gate [5], [6], [7], [8].

This was achieved by utilizing Silicon Dangling
Bonds (SiDBs, [5]) on a hydrogen-passivated silicon
surface [6], [9]. These advancements have further contributed
to the growing interest in FCN, leading to substantial
investments, amounting to millions of dollars, in research
enterprises like Quantum Silicon Inc.

With gates made out of SiDBs as basis, more complex
functionality and, hence, entire logical circuits can be realized.
To this end, gates have to be placed onto a layout and
connected with each other. In addition to placing standard
gates, routing wire segments that connect them is important, as
they incur the same area and delay costs. This interdependence
between gate placement and wire routing implies that the
overall area, as well as the critical path and delay depend
on two key factors: the positioning of standard gates and the
total number of wire segments in a given layout.

Unfortunately, physical design algorithms for conven-
tional CMOS cannot be seamlessly transferred to FCN due
to peculiar technological constraints. In response, the de-
sign automation community has explored various innova-
tive strategies. These include heuristic combinational meth-
ods [10], the use of SAT and SMT solvers [11], [12], be-
spoke manual techniques [13], and machine learning-based
approaches [14], [15]. However, given the complex nature of
these problems, as noted by their exponential characteris-
tics [16], most solutions employ heuristics, as determining
the optimal solution w.r.t. area is generally only practical for
smaller functions. As a result, many of their generated layouts
are suboptimal, mirroring issues faced in CMOS design where
post-layout optimization is often necessary [17], [18], [19],
[20].

One effective strategy for layout optimization is gate reloca-
tion [21]. This involves optimizing the positioning of standard
gates by removing the routing to adjacent gates, exploring
alternative placements, and employing the A∗ search algorithm
for rerouting [22].

Similarly, given that wire segments share the same area and
delay costs as standard gates, another optimization tactic is
wiring reduction [23]. This can be achieved by the selective
removal of excess wiring in a layout, contingent upon the
ability to restore functional correctness by realigning the
resulting layout fragments.

Although gate relocation can lead to significant area savings
and is an efficient optimization method, it is not particularly
scalable. The complexity and feasibility of relocation escalate
with both the number of gates and the overall layout area
before optimization. In contrast, wiring reduction is more
scalable, capable of handling layouts encompassing thousands
of gates and millions of tiles, even though it typically results
in less area reduction compared to gate relocation.

In this paper1, we introduce gate relocation and wiring
reduction, as well as a novel approach that merges these
two optimization strategies into a single, comprehensive,

1Preliminary versions of this work have been published in [21], [23].

https://github.com/cda-tum/fiction

2

1432143

4321432

3214321

2143214

1432143

4321432

3214321

2143214

1432143

43214321432143214321432143

32143214321432143214321432

21432143214321432143214321

14321432143214321432143214

43214321432143214321432143

32143214321432143214321432

21432143214321432143214321

14321432143214321432143214

4321432143214321432

3214321432143214321

2143214321432143214

1432143214321432143

4321432143214321432

3214321432143214321

2143214321432143214

1432143214321432143

4321432143214321432

1

3

4

2

3

1

2

4

1

3

4

2

3

1432143214321

4

2

3

1

2

4

1

3

4

2

3

1

2

4321432143214

3

1

2

4

1

3

4

2

3

1

2

4

1

3214321432143

2

4

1

3

4

2

3

1

2

4

1

3

4

2143214321432

1

3

4

2

3

1

2

4

1

3

4

2

3

1432143214321

4

2

3

1

2

4

1

3

4

2

3

1

2

4321432143214

3

1

2

4

1

3

4

2

3

1

2

4

1

3214321432143

4

4

2

3

3

1

2

2

4

1

1

3

4

4

2

3

3

1

2

2

4

1432

3

3

1

2

2

4

1

1

3

4

4

2

3

3

1

2

2

4

1

1

3

4321

2

2

4

1

1

3

4

4

2

3

3

1

2

2

4

1

1

3

4

4

2

3214

1

1

3

4

4

2

3

3

1

2

2

4

1

1

3

4

4

2

3

3

1

2143

4

4

2

3

3

1

2

2

4

1

1

3

4

4

2

3

3

1

2

2

4

1432

3

3

1

2

2

4

1

1

3

4

4

2

3

3

1

2

2

4

1

1

3

4321

2

2

4

1

1

3

4

4

2

3

3

1

2

2

4

1

1

3

4

4

2

3

3

2

2

1

1

4

43214321

2

4

4

2

2

1

3

3

1

1

4

2

2

4

4

3

1

1

3

3

2

4

2

2

1

3

1

1

4

2

4

4

1

3

3

4

2

3

1

2

4

1

3

1

1

4

4

3

3

2

2

1

3

1

1

4

2

4

4

3

1

3

3

2

4

2

2

1

3

1

1

4

2

4

4

3

1

3

3

4

2

2

3

1

2

4

1

3

4

2

4

4

3

3

2

2

1

1

4

2

4

4

3

1

3

3

2

4

2

2

1

3

1

1

4

2

4

4

3

1

3

3

2

4

2

2

3

1

1

2

4

1

3

4

2

3

1

3

3

2

2

1

1

4

4

3

1

3

3

2

4

2

2

1

3

1

1

4

2

4

4

3

1

3

3

2

4

2

2

1

3

1

1

2

4

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

4

2

3

1

2

4

1

1

4

4

3

3

2

2

1

3

1

1

4

2

4

4

3

1

3

3

2

4

2

2

1

3

1

1

4

2

4

4

3

1

3

3

4

2

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

3

1

2

4

1

3

4

4

3

3

2

2

1

1

4

2

2

4

4

3

1

1

3

3

2

4

4

2

2

1

3

3

1

1

4

2

2

4

4

3

1

1

3

3

2

4

4

2

2

3

3

1

1

2

2

4

1

1

3

4

4

2

2

4

3

3

1

1

3

2

2

4

4

2

1

1

3

2

2

4

4

2

1

1

4

4

3

3

2

4

2

2

3

3

1

3

1

1

2

2

4

2

4

4

1

1

3

1

3

3

4

4

2

4

2

2

3

1

1

3

3

1

3

1

1

2

4

4

2

2

4

2

4

4

1

3

3

1

1

1

3

3

4

2

2

4

4

4

2

3

1

1

3

3

3

1

2

4

4

2

2

2

4

1

3

3

1

1

1

3

2

2

4

4

4

2

1

1

3

3

1

4

4

2

2

4

3

3

1

(a) Initial layout for the cm82a
function created by the heuristic
ortho with an area of 26× 48 =
1248 tiles.

14321432143

43214321432

32143214321

21432143214

14321432143

43214321432

32143214321

214321

2

4

1

3

4

2

3

1

2

4

143214

1

3

4

2

3

1

2

4

1

3

432143

4

2

3

1

2

4

1

3

4

2

321432

1

3

4

2

4

2

3

1

3

1

2

4

2

4

1

3

4

2

3

1

2

4321432

3

1

2

4

1

3

4

2

3

1

1

3

4

2

3

1

2

4

1

3214321

2

4

1

3

4

2

3

1

2

4

21432143214

1

3

4

2

3

1

2

4

1432

4321

3214

1

3

1

2

4

2

4

2

3

1

2

4

3

1

2

4

1

3

4

2

4

1

3

1

3

4

2

4

2

3

1

1

2

4

4

1

3

3

4

2

2

3

1

2

4

1

3

4

2

3

1

2

1

3

4

4

4

1

4

2

4

2

3

3

3

4

3

1

3

1

3

1

2

2

3

2

4

4

1

2

4

1

1

2

1

3

3

4

1

3

1

3

4

1

2

2

3

4

2

3

4

1

1

2

3

1

4

2

3

4

4

1

3

1

2

3

3

4

2

4

4

2

2

3

1

3

3

1

1

2

4

2

2

4

2

4

1

1

3

1

3

4

(b) After optimiza-
tion, the area is re-
duced to 16 × 23 =
386 tiles.

Fig. 1: Application of the post-layout optimization algorithm
leading to an area reduction of 70.51%.

post-layout optimization algorithm. This algorithm combines
the best of both worlds by being scalable as well as efficient,
making it highly effective for preparing layouts for further
processing stages such as physical simulation [24], [25] and
fabrication [8]. Additionally, thanks to new insights linking
Cartesian layouts commonly used in QCA with hexagonal
layouts preferred for SiDBs [26], the proposed algorithm is
also applicable to multiple FCN technologies. Furthermore,
the algorithm is built on a gate-level abstraction, enabling it
to be effortlessly adapted to accommodate newly emerging
FCN technologies.

Experimental evaluations conducted for this work confirm
the benefits of post-layout optimization for FCN. In fact,
applied to layouts generated by a state-of-the-art heuristic
method, called ortho [10], an area reduction of 45.58% can
be obtained on average. This is exemplified via the cm82a
benchmark function [13], for which we achieved an area
reduction of 70.51%, as illustrated in Fig. 1.

The development of layouts with minimal area overhead is
imperative not only for reducing the computational complexity
associated with simulation tasks but also for decreasing man-
ufacturing costs. Consequently, this work represents a signif-
icant advancement toward the realization of energy-efficient
FCN layouts, positioning FCN as an environmentally sustain-
able alternative to traditional CMOS technologies.

The remainder of this paper is structured as follows: Sec-
tion II reviews the technical background on selected FCN
technologies. Afterward, Section III reviews physical design
algorithms for FCN. Section IV introduces the two optimiza-
tion algorithms for efficient gate relocation and scalable wiring
reduction, as well as the resulting post-layout optimization
approach combining the best of both worlds. The results
obtained by our experimental evaluations of the methods are

(a) Polarization states
of individual cells.

(b) Wire segment. (c) Majority gate.

Fig. 2: Elementary QCA cells and compound structures.

summarized in Section V. Finally, Section VI concludes the
paper.

An open-source implementation on top of the
fiction framework [27] is available as part of the
Munich Nanotech Toolkit (MNT, [28]).2 Furthermore,
the generated layouts have been included in the benchmark
suite MNT Bench [29].3

II. BACKGROUND

Field-coupled Nanocomputing (FCN), a promising class of
post-CMOS technologies, presents a viable approach to meet
the escalating demand for computational capabilities caused by
countless applications like large language models, datacenters,
or cryptocurrencies, while also addressing ecological impacts
of high energy consumption leading to increased greenhouse
gas emissions. FCN technologies enable circuit functional-
ity at the nanoscale without depending on electrical current
flow to transmit signals and perform computations, thereby
reducing power consumption and lessening greenhouse gas
emissions [4]. This section delivers essential background in-
formation required for understanding the rest of this work.

In the following, Section II-A examines the
most thoroughly investigated FCN implementation,
Quantum-dot Cellular Automata (QCA, [30]). Following
that, Section II-B provides insights into recent
significant advancements in the fabrication of
Silicon Dangling Bonds (SiDBs, [5]), including the successful
demonstration of a functional sub-30 nm2 OR gate [5], [6],
[7], [8], [31]. Finally, Section II-C outlines the technological
limitations associated with FCN and outlines the differences
in layout topologies of competing FCN implementations.

A. Quantum-dot Cellular Automata (QCA)
In the QCA technology, the fundamental building block,

called the cell, has a similar significance to the transistor in
CMOS as it is the elementary device. Each QCA cell com-
prises four quantum dots arranged in a square configuration
on a substrate. The binary values 0 and 1 are encoded via
polarization in the electron configurations, as illustrated in
Fig. 2a, which generate electric fields that influence neighbor-
ing cells, aligning their polarization accordingly. This inter-
connectedness allows for the propagation of information and
the execution of computations across multiple cells.

2Code is available at https://github.com/cda-tum/fiction.
3https://www.cda.cit.tum.de/mntbench

https://github.com/cda-tum/fiction
https://www.cda.cit.tum.de/mntbench

3

(a) MAJ3 (b) AND (c) OR (d) Inverter

(e) Wire (f) Bent wire (g) Fan-out (h) Crossing

Fig. 3: The QCA ONE gate library [32].

1 nm

(a) H-Si(100)-2×1
surface structure.

0

0

0 1

1

0 0

1

1 1

1

1

Input perturber

Output perturber

DB pairs

(b) Recreation of a binary-dot OR gate [8],
adapted from [33].

Fig. 4: SiDBs on an H-Si(100)-2×1 lattice implementing logic.

For instance, arranging QCA cells in a straight line forms
a binary wire segment, as depicted in Fig. 2b. Moreover,
positioning a QCA cell adjacent to three input cells enables
the implementation of the majority-of-three (MAJ3) function,
which is then propagated to an output cell on the right, as
shown in Fig. 2c. This arrangement provides the basis for
building boolean complete gate libraries like QCA ONE [32],
illustrated in Fig. 3, which can then be used to create more
complex functions by connecting the outputs and inputs of
gates with wire segments, similar to placement and routing of
gates made out of transistors in traditional CMOS. Notably,
as depicted in Figs. 3e to 3h, wire segments occupy the same
area—a tile hosting cells on a 5× 5 grid—and incur the same
delay (one clock phase per tile) as standard gates, illustrated
in Figs. 3a to 3d [32].

B. Silicon Dangling Bonds (SiDBs)

SiDBs are created by selectively removing hydrogen atoms
from a passivated silicon (H-Si(100)-2×1) surface [9] using,
e. g., a scanning tunneling microscope [5]. Recent advance-
ments in the field [6], [34], [35], [36], [37] have enabled this
fabrication process to produce atomically-sized, chemically
identical quantum dots with unparalleled precision. Instead
of four, SiDB cells require only two quantum dots [8]. On
top of the possibility to implement the standard QCA cells
using two SiDB cells, even smaller gates compared to the
QCA gates illustrated in Fig. 3 can be created by only using
single SiDB pairs to represent the binary values 0 or 1,
depending on the position of the charge, therefore creating
Binary-dot Logic (BDL) [8].

(a) 2DDWave [41]. (b) USE [42]. (c) RES [43].

Fig. 5: Common clocking schemes for FCN technologies. The
four distinct clock phases, labeled 1 through 4, are represented
by white, light gray, dark gray, and black, respectively.

A schematic representation of an SiDB on the surface of
an H-Si(100)-2×1 lattice can be seen in Fig. 4a, where the
possible locations of the SiDB are colored gray and the actual
SiDB is indicated by the green dot. Furthermore, the BDL
concept facilitated the successful experimental demonstration
of an SiDB OR gate with a footprint of less than 30 nm2 [8],
which has never been achieved with QCA cells. A schematic
illustration of this OR gate can be seen in Fig. 4b, demonstrat-
ing how the output changes based on the four possible input
combinations of 0 and 1.

The Bestagon library [33] offers implementations of this OR
and other standard gates, some of which are designed using
reinforcement learning [38]. Efficient and accurate simulations
of these gates can be conducted using physical simulators such
as SiQAD [39], QuickSim [24], or QuickExact [25]. On top,
standard gates with the lowest SiDB count, leading to less fab-
rication cost, can be determined using exact simulations [40].

C. Technology Constraints

In FCN technologies, numerous constraints create signif-
icant challenges for the design of circuit layouts. The re-
quirement for planarity imposes strict limitations on cross-
ing capabilities, complicating wire routing considerably [44].
Additionally, FCN circuits must be subdivided into uniform
regions that are periodically activated by external fields. This
concept, referred to as Clocking [44], [45], plays a critical role
in maintaining signal stability and regulating information flow,
which is essential for ensuring the proper functionality of both
combinational and sequential circuits in the FCN domain. To
ensure signal synchronization, wire paths have to be balanced
to prevent information desynchronization [46], [47].

The standard clocking framework is based on four sequen-
tial clock signals that allow a pipeline-like progression of data
through tiles governed by clock 1, followed by those controlled
by clock 2, clock 3, and, ultimately, clock 4 before cycling
back to clock 1 [44], [45].

The distribution of clock signals via buried electrodes
within the substrate remains a subject of debate, leading to
the development of various clocking schemes, as depicted
in Fig. 5 [41], [42], [43]. The 2DDWave clocking scheme
in Fig. 5a is particularly useful for combinational logic, as it
ensures unidirectional information flow from left to right and
from top to bottom, thus facilitating strictly acyclic and linear
data propagation. In this scheme, each gate can receive input
signals from its top and left edges of the square tile they are

4

GATE GATE GATE

GATE

GATE

GATE

(a) 3×3 Cartesian layout.

GATE

GATE GATE

GATE GATE

GATE

(b) 3× 3 hexagonal layout.

Fig. 6: (a) When strictly connecting inputs to outputs,
Y-shaped SiDB gates do not fit into the structure of Cartesian
grids as elementary building blocks. (b) Hexagonal grids can
host Y-shaped SiDB gates without modifications.

placed on, and transmit outputs through the right and bottom
edges. These specific characteristics have given rise to custom
heuristics that can efficiently handle the physical design of
arbitrarily large logic networks with minimal computational
overhead on the 2DDWave scheme [10], [48].

Unfortunately, the direct substitution of QCA gates with
SiDB gates leads to a geometric inconsistency on the Cartesian
grid, arising from the disparity between the plus-shaped QCA
gates and the Y-shaped SiDB counterparts, as illustrated in
Fig. 6a. Y-shaped SiDB gates receive input signals from two
adjacent gates positioned to the north and transmit output
information southward. This setup inherently establishes a
unidirectional data flow exclusively from top to bottom, as
demonstrated in Fig. 6b.

The principal distinctions between clocking schemes on
Cartesian layouts and clocking schemes on hexagonal layouts,
which are suitable for SiDBs, include:

• The majority of QCA layouts utilize the 2DDWave clock-
ing scheme, as it imposes minimal overhead for imple-
menting most combinational functions [11]. In 2DDWave-
clocked layouts, signal propagation is only permitted to
the east and south, as illustrated by the configuration of
clock phases in Fig. 5a.

• First approaches of using hexagonal layouts for
SiDBs [33] use a row-wise clocking scheme to facilitate
southward signal propagation, which aligns with the Y-
shape of the Bestagon gates.

III. RELATED WORK: PHYSICAL DESIGN FOR FCN

The established FCN design flow is depicted in Fig. 7.
After synthesizing the logic network from a truth table and
applying logic optimization techniques and technology map-
ping, the network is further processed using logic optimization,
then mapped to the specific technology before minimizing
crossings, inserting fanouts and balancing. Afterward, the
underlying clocking scheme to be used as the floorplan has
to be chosen. Based on the selected clocking scheme, the
next step is detailed placement and routing using one of
the exact or heuristic physical algorithms, which is also the
most complex step in the whole physical design flow. After
the placement and routing step, the finished layout has to
be checked for any design rule violations and functional
equivalence to the truth table from the beginning. Only if all of

these checks are passed, the resulting layout can be universally
applied across various FCN technologies such as QCA, SiDBs
(using a conversion technique described in Section III-C), or
Nanomagnet Logic (NML) [49], by mapping all gates and
wires to their respective cell-level implementations defined by
a technology-specific gate library [32], [33], [50].

This section provides a comprehensive overview of phys-
ical design algorithms, spanning from exact methodologies
outlined in Section III-A to heuristic strategies discussed in
Section III-B. Additionally, it details the conversion technique
that adapts Cartesian 2DDWave-clocked layouts appropriate
for QCA to hexagonal grids suitable for SiDBs in III-C.

A. Exact Approaches

Exact physical design algorithms, e. g., [11], [12], generate
layouts from specifications that are optimal concerning spe-
cific cost metrics, typically the layout area. While one ap-
proach [12] extracts a symbolic formulation that encapsulates
the design task of realizing a given function in terms of a QCA
circuit, along with all necessary objectives and constraints
from the given logic network, another approach [11] advances
this by starting from the truth table of the underlying function.
Passing the resulting formulation to a reasoning engine allows
for the extraction of a solution that is optimal with respect to
some cost metric, such as layout area.

These algorithms are clocking-scheme agnostic, although
experimental results showed that, due to the different arrange-
ment of clock zones, the resulting layout area can differ based
on the underlying clocking scheme.

Example 1: In Fig. 8, the exact algorithm was used to
create layouts for a multiplexer on different clocking schemes
and each gate was then mapped to its respective cell-level
implementation from the QCA ONE gate library [32]. Due to
the different arrangement of clock zones, the layout with the
least amount of tiles on 2DDWave only requires 12 tiles, as
seen in Fig. 8a, while the optimal solutions on USE in Fig. 8b
and RES in Fig. 8c impose an additional overhead of 3 tiles
with a layout size of 15 tiles.
Indeed, experimental evaluations have shown that the
2DDWave clocking scheme introduces the least area overhead
on average [11].

Nonetheless, these algorithms are hindered by performance
constraints due to the NP-completeness of the task [16],
restricting their application to relatively small logic networks
with less than ≈ 40 gates on layouts with less than ≈ 100
tiles.

B. Heuristic Approaches

The heuristic algorithm ortho can design large-scale layouts
for QCA circuits, handling hundreds of millions of tiles
by imposing drastic restrictions on the search space [10].
It leverages knowledge from theoretical computer science,
specifically orthogonal graph drawing, to create graphs with
only horizontal and vertical edges to represent wire segments
in QCA layouts. It accomplishes this impressive scale by
initially coloring the logic network with two colors (red and

5

1

2

2

1

4

3

3

43 2

1

4

Quantum-dot Cellular Automata
(QCA)

Silicon Dangling Bonds
(SiDBs)

in-plane Nanomagnet
Logic (iNML)

Logic
Synthesis 45°

Logic Optimization
Technology Mapping

Crossing-Minimization
Fanout-Insertion

Balancing

Clocking Scheme
Selection

1

2

2

1

4

3

3

43

1

2

4

1

2

2

1

4

3

3

43

1

2

4

1

2

2

1

4

3

43

1

2

4

1

Detailed
Placement and

Routing

DRV Checking
Formal Verification

RES

2DDWave

USE

Verilog

 module mux_2to1 (
 input wire sel,
 input wire in0,
 input wire in1,
 output wire out
);

 assign out = sel ? in1 : in0;

 endmodule Cell Library
Application

Fig. 7: The FCN physical design flow as implemented by state-of-the-art tools.

214

143

432

321

(a) 2:1-MUX layout
on 2DDWave [41].

3

412

143

234

2

3

1

21

(b) 2:1-MUX layout
on USE [42].

2

341

432

121

1

2

4

14

(c) 2:1-MUX layout
on RES [43].

Fig. 8: Optimal layouts for the realization of a 2-to-1 multi-
plexer (2:1-MUX) using different clocking schemes.

green in Fig. 9a), which provides a directive for gate place-
ment, therefore ensuring that the two previously discussed
technological constraints planarity and signal balancing are
met automatically. This color-based direction assignment helps
in structuring the layout such that each gate is added in a
topological sequence, introducing a new row or column to the
layout with each addition. On top, ortho not only simplifies
wire routing but also effectively balances the paths across
the design. It is important to recognize, however, that the
ortho algorithm relies on approximations which can lead to
layouts that are significantly larger than those derived from
exact solutions. This characteristic underscores the need for
subsequent optimizations to refine and potentially reduce the
size of the resulting layout.

Example 2: The use of the ortho algorithm is illustrated in
Fig. 9, showcasing the design of a layout for a parity generator
function. The resulting layout encompasses 126 tiles, while the
exact algorithm is able to determine a solution for the same
function on a layout with only 32 tiles, as the heuristic adds a
new column or row for every gate, leading to multiple empty
tiles as well as the necessity for many wire segments to connect
the placed gates.

To reduce the layout area and number of required wire
segments introduced by the necessity to order the signals
of input pins on a layout, this step can be moved to the
preprocessing stage of the logic network, ensuring that the
input pins are already ordered before placing them [48].

(a) Colored logic
network represent-
ing a parity gener-
ator function.

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

4

3

3 1

4 1

2

(b) Resulting layout on the
2DDWave clocking scheme.

Fig. 9: The heuristic algorithm ortho colors the logic network
with two colors, where green lines indicate placing a node
to the south of its predecessors and red lines to the east.
During the placement of each gate, the color of its incoming
edges determines the layout adjustments: green edges trigger
the addition of a new row, while red edges require the insertion
of a new column.

Other heuristic approaches [13], [51], [52], [53], [54] have
been proposed, which can generate smaller layouts com-
pared to ortho. Unfortunately, these approaches are either
not scalable, can only handle a specific clocking scheme or
need additional domain expert knowledge. Another approach
overcomes all of these shortcoming by using reinforcement
learning for gate placement [14], [15]. This method generates
layouts for complex functions that are unmanageable by exact
algorithms within a reasonable time frame and occupy less
layout area than results generated by ortho. However, this
method is also only applicable for logic networks with around
200 gates, but is technology- and clocking scheme-agnostic
just like the exact algorithms from [11], [12].

A recent addition called gold [55], [56] generates gate-
level layouts from logic network specifications by spanning
a search space graph where each placement event can be
represented as a search space vertex characterized by a partial

6

1

2

2

1

1

2

4

3

3

43

4

(a) Multiplexer realized
on a Cartesian layout.

1

1

1

22

2

3 3 3

4 4 4

(b) Layout obtained by a
45° rotation.

1

1 1

2 2

2

3 3 3

4 4 4

(c) Hexago-
nalization.

Fig. 10: Using the hexagonalization algorithm [26], the layout
created for a multiplexer using the 2DDWave clocking scheme
can be rotated to create a row-wise-clocked hexagonal layout
suitable for Y-shaped SiDB gates.

layout at that instance. Edges between a partial layout a and
b exist iff a can be transformed into b via a single placement
event. Similar to navigating through a maze, A∗-search can
be employed to discover a path from the starting vertex (the
empty layout) to the exit of the maze (a layout with all gates
placed). While this approach yields better layouts compared
to the other heuristic approaches, it faces similar scalability
constraints as the approach based on reinforcement learning.

In this work, layouts created by the ortho algorithm serve as
practical examples to illustrate the effectiveness of the newly
proposed post-layout optimization algorithms, as they can be
generated even for logic functions with thousands of gates on
layouts with millions of tiles.

C. Transforming QCA Layouts to SiDB Layouts

Since most physical design algorithms have been developed
for QCA on Cartesian grids, the shift to hexagonal grids
for SiDB gates raised the question of whether decades of
research will again be needed to develop specialized design
algorithms for SiDBs. Fortunately, with a recently discov-
ered algorithm [26], a 45° turn is enough to transform any
Cartesian, 2DDWave-clocked [41] layout into a hexagonal
configuration to accommodate Y-shaped SiDB gates to solve
the topology mismatch illustrated in Fig. 6.

Example 3: This idea is illustrated in Fig. 10 using a 3× 4
Cartesian layout: Fig. 10a presents the implementation of
a 2:1-multiplexer constructed using the exact algorithm de-
scribed in [12], tailored for QCA gates on a Cartesian grid.
Fig. 10b illustrates the adjustment of this layout through
rotation to establish the row-wise clocking scheme, as used
in [33]. To adapt this layout for use with hexagonal grid
tiles, as required by the Y-shaped SiDB gates, the rectangular
tiles shown in Fig. 10b are simply elongated vertically. This
transformation is demonstrated in Fig. 10c. Both layouts can
than be mapped with gates from the respective gate library,
as illustrated in Fig. 11.

Using this 45° turn, decades of research in the physical
design for QCA can be reused for the physical design of
SiDBs. More precisely: existing Cartesian 2DDWave-clocked
QCA layouts can be directly transformed to meet the require-
ments for placing SiDBs on the hexagonal row-wise-clocked
layout.

214

143

432

321

(a) QCA layout mapped
with gates from the QCA
ONE gate library.

1

1 1

2 2

2

3 3 3

4 4 4

(b) SiDB layout
mapped with gates
from the Bestagon
gate library.

Fig. 11: Cartesian layout with QCA gates before the rotation
and the hexagonal layout with SiDB gates after the rotation.

Furthermore, any improvement achieved in the physical
design for 2DDWave-clocked Cartesian layouts for QCA di-
rectly translates to an improvement in the physical design for
row-wise-clocked hexagonal layouts for SiDBs. Therefore, the
development of an optimization algorithm specifically tailored
to the 2DDWave clocking scheme leads to more efficient
layouts for multiple FCN technologies.

The superiority of the 2DDWave clocking scheme compared
to other clocking schemes, its usage in state-of-the-art heuris-
tics like ortho and its connection to the hexagonal grid prompts
the question: how can the characteristics of this clocking
scheme be used to further minimize the layout area after the
placement and routing step?

This fundamental question is tackled in the following sec-
tion, which poses the main contribution of this work.

IV. PROPOSED OPTIMIZATION STRATEGIES

This section first outlines the special characteristics of
2DDWave-clocked layouts created by heuristic approaches that
allow for further reduction in layout area and critical path
length in Section IV-A. The gate relocation algorithm proposed
in Section IV-B is highly effective in optimizing area utiliza-
tion, but lacks scalability. Conversely, the wiring reduction
strategy presented in Section IV-C is highly scalable across
various circuit sizes, although it does not achieve the same
level of result quality as the gate relocation algorithm. The
post-layout optimization outlined in Section IV-D combines
the best aspects of the gate relocation and the wiring reduction
algorithm, therefore achieving scalability and effectiveness.

A. Motivation

A crucial characteristic of layouts clocked by 2DDWave un-
locking optimization possibilities are the allowed information
flow directions: In 2DDWave-clocked layouts, information can
only flow horizontally from left to right and vertically from
top to bottom. Consequently, to effectively reduce the layout
area, gates should be positioned as close as possible to the

7

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

(a) 2DDWave-
clocked layouts
allow information
flow from left to
right and top to
bottom.

(b) Simple
network
that
negates the
input.

2

1

2

1 2

4

3

3

43

4

1

2

4

3

1

(c) The input pin
is placed in the
top left corner
first.

1

2

2

1 2

4

3

3

43

4

1

2

4

3

1

(d) Due to the
flow directions,
only 3 positions
are available for
the output.

1

2

2

4

3

3

43

1

2

4

1

(e) The inverter
placement leads
to a final layout
size of 12 tiles.

1

2

1 2

4

3

3

43

4

1

2

4

3

1 2

(f) For a more strate-
gic placement, 11 po-
sitions become avail-
able.

31 2

(g) The
inverter
placement
leads to a
final layout
size of 3 tiles.

Fig. 12: Characteristics of the 2DDWave clocking scheme determining area utilization.

top-left corner, from where layout construction usually starts.
The strategic positioning of a gate is essential as it impacts
the placement of all subsequent gates in the design due to
the acyclic flow of information. In other words, the closer a
gate is positioned to the top-left corner, the fewer clock zones
have to be traversed to reach it. Thus, when aiming for this
optimization criterion for all gates as much as possible, overall
layout area and delay are reduced.

Example 4: In Fig. 12a, the permissible directions for
signal flow on the 2DDWave clocking scheme are indicated
with green arrows, illustrating that in each tile information
can only traverse from left to right or from top to bottom. This
directional constraint means that a gate cannot be positioned
above or to the left of its predecessor. The network depicted in
Fig. 12b consists of a simple sequence involving an input, an
inverter gate, and an output intended to be implemented as an
FCN layout as a toy example. The physical design algorithm
then places the input pin, inverter and output sequentially.
First, the input pin is placed in the top left corner, as illustrated
in Fig. 12c, so it can be accessed easily. Following this
placement, if the inverter is positioned in the third column of
the third row, as shown in Fig. 12d, this location restricts the
possible placements for the output pin, resulting in a minimum
layout area of 12 tiles, as illustrated Fig. 12e. Alternatively, a
more strategic placement of the inverter in the second column
of the first row opens up additional possibilities for positioning
the output pin, as shown in Fig. 12f. This arrangement allows
the output to be placed in the third column of the first row,
significantly reducing the necessary layout area to just 3 tiles
in Fig. 12g.

This example underscores the importance of strategic gate
placement within the constraints of the 2DDWave clocking
scheme to minimize layout area effectively.

B. Gate Relocation

The fundamental principle of the proposed optimization
algorithm centers on relocating gates to more favorable po-
sitions within the layout in an effort to reduce area and delay.
This procedure encompasses several keys steps, which will be
elaborated upon subsequently. These steps include:

1) Removal of existing wiring: Initially, all existing con-
nections to and from the specified gate are detached.
This step is necessary because wire segments occupy

1 2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

(a) The OR gate to
be moved is indi-
cated in yellow.

1 2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

(b) After removing
the wiring the OR
gate is repositioned.

1 2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

(c) If a new wiring
is found the OR
gate is rewired.

1 2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

(d) The output to be
moved is indicated
in yellow.

1 2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

(e) After removing
the wiring the out-
put is repositioned.

1 2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

(f) If a new wiring
is found the output
is rewired.

Fig. 13: Snapshot of the layout from Fig. 9b illustrating the
optimization idea.

the same area as standard gates, potentially obstructing
the tile to which the gate is to be relocated.

2) Identification of better placements: Following the
disconnection of the gate, the algorithm searches for
more strategic locations that are closer to the top left
corner of the layout, following a strategy similar to that
used by NanoPlaceR [14], to enable more possible po-
sitions for all succeeding gates, as shown in Example 4.
The algorithm determines these feasible locations by
searching for better placements to the right and bottom
of the location of the preceding gates.

3) Determining a new valid location: For each potential
new position, an A∗-search algorithm is employed to
verify the feasibility of connections to and from the gate.
If valid connections cannot be established, the algorithm
continues to evaluate other possible locations.

Example 5: To demonstrate the optimization process, con-
sider again the layout depicted in Fig. 9b that was generated
by the ortho algorithm. Passing it to the proposed gate
relocation algorithm, new tile positions will be considered

8

Algorithm 1: Gate Relocation
Input: FCN gate-level layout L
Input: Maximum number of gate relocations m
Output: Optimized layout

1 do
2 moved_at_least_one_gate ← false
3 foreach gate ∈ L do
4 remove present wiring of gate
5 coords ← m potentially better coordinates for gate
6 found_better_location ← false
7 foreach c ∈ coords do
8 relocate gate to c // Fig. 13b and 13e
9 wiring ← A∗-SEARCH

10 if wiring ̸= ∅ then
11 route g using wiring // Fig. 13c and 13f
12 found_better_location ← true
13 end if
14 end foreach
15 if found_better_location then
16 moved_at_least_one_gate ← true
17 else
18 move gate back to its initial position
19 restore original wiring of gate
20 end if
21 end foreach
22 while moved_at_least_one_gate
23 return L

for each gate. In Fig. 13a, the bottom-rightmost gate from
the aforementioned layout is designated for relocation. Here,
it is highlighted in yellow. Initially, all existing connections
between this gate and its predecessors and successor are
removed, clearing the way for repositioning. Subsequently,
potential new coordinates for the gate are calculated, ranked
by their distance to the top left corner. After the gate is
moved to the first new coordinate in the list, as exemplified
in Fig. 13b, the A∗ algorithm is employed to assess the
feasibility of routing new connections from the predecessors
to the relocated gate and from the gate to its successor. If
viable new wiring routes are identified, these are implemented
into the layout, as seen in Fig. 13c. If not, the original wiring
is reinstated, ensuring the functionality of the circuit remains
intact. Next, the output f , highlighted in yellow in Fig. 13d, is
detached from its predecessor and moved to a more favorable
position that became available due to the preceding move,
as seen in Fig. 13e. As a new wiring is found, the output is
reconnected in Fig. 13f, effectively reducing the layout area
via the removal of two empty rows at the bottom.

Algorithm 1 presents an overview of the proposed approach.
After disconnecting a gate from its preceding and succeed-

ing gates (Line 4), the algorithm determines potential new
positions. This is based on the location of its preceding gates
within the layout (Line 5). The gate is then relocated to a
position deemed more optimal, typically closer to the top left
corner of the layout (Line 8).

Once relocated, the A∗ search algorithm is employed to
evaluate the feasibility of reconnecting the gate with its
predecessors and successors from this new position (Line 9).
If a viable wiring configuration is found, it is implemented,
thereby re-establishing the necessary connections within the
layout (Line 10 and 11).

If, however, no suitable wiring solution can be established
from any of the potential new positions (Line 17), the gate

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

4

3

3 1

4 1

2

(a) In the first iter-
ation, every gate can
be moved to a position
closer to the top left
corner.

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

3

4

1

2

2

4

3

3 1

4 1

2

2

4

3

3 1

4 1

2

(b) In the second iter-
ation, only three gates
can be relocated to even
more favorable posi-
tions.

Fig. 14: Gate relocation (Algorithm 1) applied to the layout
from Fig. 9b that was obtained by the ortho algorithm.

is moved back to its original position. The previous wiring
connections are then restored to ensure that the functional
integrity of the circuit is maintained (Line 18 and 19). This
approach ensures that each gate placement optimizes the
overall layout without compromising the circuit’s operational
capabilities.

Example 6: One iteration of Algorithm 1 applied to the
layout from Fig. 9b yields the optimized layout illustrated
in Fig. 14a. During this process, all gates are relocated to
more advantageous positions, which results in a considerable
amount of layout area being freed at the bottom. In the
subsequent second iteration, further adjustments are possi-
ble for only three gates, effectively reaching the limits of
optimization since no further gate relocations are feasible
in the third iteration. The resulting optimized layout, shown
in Fig. 14b, demonstrates a more compact arrangement with
gates occupying only six of the original fourteen rows resulting
in more than 57.14% total area reduction.

C. Wiring Reduction

In most heuristic physical design algorithms, particularly
those that utilize approximations, a common issue is the
inefficient use of wire segments, leading to redundant wiring.
These redundancies not only increase the layout area but also
introduce unnecessary delays.

A possible solution is to strategically remove certain wire
segments while ensuring that the remaining layout sections can
still be reassembled and reconnected without compromising
the layout’s functional integrity. However, detecting which
wire segments can be safely deleted is a complex task. To
address this challenge, we introduce obstructions within the
layout that act as protective barriers. These obstructions ensure
that essential components, such as gates, are preserved during
the removal process and are not deleted by accident.

Once the layout is prepared with these obstructions, we uti-
lize the A∗ Search [22] algorithm to identify feasible segments
of connected tiles, also called cuts, in the layout. These cuts
can extend either horizontally or vertically, depending on a

9

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

3

43

4

1

2

2

1

4

3

3

43

1

2

4 1

2

2

3

43

(a) Layout for the 2:1
multiplexer created by the
heuristic ortho [10].

(b) Added obstructions and
two possible cuts for wiring
removal.

1

2

2

1

4

3

3

43

1

4

3

1

2

2

1

3

4

1

2

2

4

3

3 1

4 1 2

43

1

1

2

2

2

2

3

3

3

4

4

4

(c) Wires on the cut paths
are deleted, leaving behind
gaps.

1

2

2

1

1

2

4

3

3

43

4

1

2

4

3

1

2

2

1

3

43

4

1 2 3 4 1 2

2 3 4 1 2

2 3 41

3

3 4

(d) Resulting gaps are
closed by pushing the
layout together.

Fig. 15: One iteration of the proposed wiring reduction algo-
rithm.

Algorithm 2: Wiring Reduction
Input: FCN gate-level layout L // Fig. 15a
Output: Optimized layout

1 do
2 optimize ← false
3 foreach search_direction ∈ {horizontally, vertically} do
4 add obstructions based on search_direction

// Fig. 15b
5 cuts ← A∗-SEARCH(search_direction) // Fig. 15b
6 if cuts ̸= ∅ then
7 delete wires on cuts // Fig. 15c
8 move and connect layout fragments // Fig. 15d
9 resize layout

10 optimize ← true
11 end if
12 end foreach
13 while optimize
14 return L

search direction, which alternates between orientations during
optimization.

After identifying theses cuts, the corresponding wire seg-
ments are deleted. However, this step alone is not sufficient, as
the layout fragments resulting from the cuts must be realigned
to restore connections.

Algorithm 2 presents an overview of the proposed approach.
In the following, the four main steps of the approach are

explained using a suboptimal layout of the 2:1 multiplexer
obtained with ortho [10] as shown in Fig. 15a as a running
example.

1) Adding Obstructions: Initially, obstructions are strate-
gically placed within the layout (Line 4) to ensure that A∗

focuses solely on identifying valid cuts. This step is crucial
in preventing the algorithm from inadvertently proposing the
removal of essential components. As illustrated in Fig. 15b,
standard gates are entirely blocked from consideration for
deletion because they are integral to the circuit’s functionality
and cannot be removed. Similarly, bent wire segments are par-
tially obstructed, as these can only be cut in specific directions.
These obstructions effectively guide the A∗ algorithm in its
search, ensuring that any cuts it suggests will preserve the
necessary connectivity and functionality of the layout.

2) Determining Cuts: To the obstructed layout, the A∗-
search algorithm is applied to identify feasible cuts through the
layout (Line 5). In Fig. 15b, two potential cuts are illustrated
in blue.

3) Deleting Wires: Following the identification of feasible
cuts, all wire segments that fall within these designated cuts
are removed from the original layout (Line 7). This action is
visualized in Fig. 15c, where the segments located along the
two blue cuts are removed.

4) Repositioning Gates: After the successful removal of
wire segments as outlined previously, the layout is fragmented
and its operational integrity has to be restored (Line 8). This
is done by shifting all tiles located below the areas where
wires were removed upward to close the created gaps. As
demonstrated in Fig. 15d, this repositioning results in empty
rows at the bottom of the layout, which are no longer necessary
and can be removed completely.

The four aforementioned steps then get repeated iteratively,
adjusting the layout each time to close gaps and reduce space
until no more feasible cuts can be identified, indicating that
the layout has been optimized as much as possible under the
given constraints.

D. Post-Layout Optimization

The proposed post-layout optimization method seeks to
leverage the strengths of the two presented complementary
approaches: wiring reduction and gate relocation. Each of
these methods offers distinct advantages and, when combined,
can lead to significant improvements in layout quality.

Wiring reduction is particularly effective due to its fast
runtime and ability to minimize the overall layout size quickly.
By reducing the number of wire segments early in the process,
the layout is simplified, which subsequently makes the gate
relocation process more manageable. This initial reduction step
provides a smaller and more compact starting point for further
optimization.

On the other hand, gate relocation can yield more precise
and targeted improvements by strategically repositioning gates
to further optimize the layout. However, evaluating every
possible gate location on large layouts can lead to exploding
runtime behavior. To address this, the number of gate relo-
cations is limited by a user-defined parameter, denoted as m
in Algorithm 3, which summarizes the resulting methodology.
Utilizing m, users can control the balance between runtime

10

Algorithm 3: Post-Layout Optimization
Input: FCN gate-level layout to optimize L
Input: Maximum number of gate relocations m
Output: Optimized layout

1 WIRINGREDUCTION(L) // Algorithm 2
2 improvement ← true
3 while improvement do
4 WIRINGREDUCTION(L) // Algorithm 2
5 GATERELOCATION(L,m) // Algorithm 1
6 if no gate moved and no wiring reduced then
7 improvement ← false
8 end if
9 end while

10 return L

and optimization depth, preventing excessive computation time
while still achieving meaningful improvements.

The optimization process alternates between wiring reduc-
tion and gate relocation, allowing each method to complement
the other. The wiring reduction improves the layout quickly,
and gate relocation fine-tunes it by moving gates to better
locations. This iterative process continues until no further
improvements can be made.

V. EXPERIMENTAL EVALUATION

In an extensive experimental evaluation, we first demon-
strate that gate relocation is effective, but not scalable, while
wiring reduction is scalable, but does not achieve the same
improvements as gate relocation. Second, however, it is shown
that the proposed approach of combining gate relocation with
wiring reduction combines the best of both worlds. To this
end, the experimental setup is described in Section V-A.
Subsequently, the results obtained for gate relocation, wiring
reduction and the combined post-layout optimization algo-
rithm are presented in Section V-B , Section V-C, and
Section V-D, respectively. Finally, the effect of different values
for the maximum number of gate relocations are discussed and
analyzed in Section V-E.

A. Experimental Setup

Using the optimization methods proposed in this work, re-
sults from any physical design algorithm for Cartesian layouts
using the 2DDWave [41] clocking scheme can be optimized
in terms of area, number of wire segments, and critical path
length. For the experimental evaluation, a variety of different
benchmark circuits [13], [57], [58], [59] are created using
multiple physical design algorithms [10], [15], [48] and then
optimized using the proposed algorithms.

The optimization methods proposed in this work have been
implemented in C++17 on top of the fiction framework [27] as
part of the Munich Nanotech Toolkit (MNT).4 Additionally, the
optimization algorithm has been made accessible via fiction’s
CLI as command optimize. By toggling the flag -w, the
wiring reduction algorithm is applied exclusively, and via
flag -m, the desired maximum number of gate relocations can
be specified. For the experiments, the code was compiled with
AppleClang 14.0.0 and the optimization then carried out on

4Code is available at https://github.com/cda-tum/fiction.

a macOS 13.0 machine with an Apple Silicon M1 Pro SoC
with 32GB of integrated main memory.

B. Gate Relocation

For gate relocation, we utilized two heuristic approaches,
namely ortho [10] and NanoPlaceR [14] as representatives for
existing algorithms for the design of FCN circuits, optimized
the generated layouts using the proposed methodology, and
verified the equivalence of the obtained layouts using the
formal verification technique proposed in [60].

All methods have been evaluated using a broad variety of
well-established benchmarks [13], [57]. The resulting data is
summarized in Table I, which lists the benchmark configu-
rations as well as layout characteristics of the two heuristic
approaches before and after the optimization.

With the proposed post-layout optimization method, the
quality of the designs generated using the ortho method
increased significantly, with an average layout area reduction
of approximately 52.44%. For layouts produced with the
reinforcement learning-based NanoPlaceR, an average area
reduction of 20.04% could be achieved, since layouts created
with that method exhibit considerably lower area costs to
begin with. For small benchmarks, the layouts obtained by
NanoPlaceR were already optimal, leaving no room for further
improvement through the optimization algorithm (first five
rows of Table I). Additionally, for the benchmark function
Parity Gen. no improvement was possible by gate relocation
only, even though the layout is not optimal. This can happen
as the A∗ search algorithm is used to find a new wiring, which
is not always the same as in the optimal layout found by an
exact algorithm.

Overall, the application of the optimization algorithm to
layouts generated by NanoPlaceR yielded the smallest lay-
outs across all benchmark functions except for t_5, 1bitAd-
derAOIG, and cm82a, for which a combination of ortho and
the optimization algorithm yielded the best outcome, but only
differing by one or two additional rows and/or columns. This
is mainly due to the small layouts to begin with, where
randomness in the generation with NanoPlaceR can lead to
gates being placed such that fewer relocations are possible.

C. Wiring Reduction

For wiring reduction, we took layouts created by the heuris-
tic physical design approaches ortho [10] and Input Ordering
SDN [48] for a broad variety of well-established benchmark
sets with large circuits [58], [59], as wiring reduction is more
scalable than gate relocation, applied the proposed wiring
reduction algorithm, and verified the correctness of the opti-
mized layouts via formal verification [60]. The obtained data
is summarized in Table II and Table III.

For layouts created by ortho, the number of wire segments
was reduced by 17.90% on average, resulting in an average
area reduction and critical path shortening of 32.94% and
18.93%, respectively, while being highly scalable, optimizing
layouts with up to 1 million tiles in less than 1min. Even
for very large layouts with more than 20 million tiles, the
convergence time is still less than 6 h. For layouts created

https://github.com/cda-tum/fiction

11

Table I: Comparative experimental evaluation of the proposed gate relocation algorithm.

BENCHMARK CIRCUIT [13], [57] ORTHO [10] GATE RELOCATION DIFFERENCE NANOPLACER [14] GATE RELOCATION DIFFERENCE

Name I / O |N | w × h = A w × h = A t[s] ∆A w × h = A w × h = A t[s] ∆A

2:1 MUX 3 / 1 4 6 × 7 = 42 6 × 4 = 24 < 0.01 −42.86% 3 × 4 = 12 3 × 4 = 12 < 0.01 ±0.00
XOR 2 / 1 4 5 × 7 = 35 4 × 7 = 28 < 0.01 −20.00% 3 × 6 = 18 3 × 6 = 18 < 0.01 ±0.00
Full Adder 3 / 2 5 8 × 10 = 80 6 × 9 = 54 < 0.01 −32.50% 4 × 7 = 28 4 × 7 = 28 < 0.01 ±0.00
XNOR 2 / 1 6 6 × 8 = 48 4 × 6 = 24 < 0.01 −50.00% 3 × 6 = 18 3 × 6 = 18 < 0.01 ±0.00
Half Adder 2 / 2 6 9 × 8 = 72 4 × 6 = 24 < 0.01 −66.67% 4 × 6 = 24 4 × 6 = 24 < 0.01 ±0.00
Parity Gen. 3 / 1 10 9 × 13 = 117 8 × 8 = 64 < 0.01 −45.30% 7 × 9 = 63 7 × 9 = 63 < 0.01 ±0.00
clpl 11 / 5 10 17 × 25 = 425 9 × 13 = 117 < 0.01 −72.47% 6 × 18 = 108 6 × 17 = 102 < 0.01 −5.56%
t 5 / 2 11 10 × 16 = 160 7 × 8 = 56 < 0.01 −65.00% 8 × 8 = 64 7 × 6 = 42 < 0.01 −34.38%
t_5 5 / 2 11 10 × 16 = 160 7 × 9 = 63 < 0.01 −60.62% 7 × 8 = 56 6 × 8 = 48 < 0.01 −14.29%
b1_r2 3 / 4 12 13 × 17 = 221 7 × 9 = 63 < 0.01 −71.49% 10 × 10 = 100 8 × 10 = 80 < 0.01 −20.00%
Parity Check. 4 / 1 15 12 × 19 = 228 8 × 11 = 88 < 0.01 −61.40% 9 × 9 = 81 7 × 10 = 70 < 0.01 −13.58%
1bitAdderAOIG 3 / 2 15 12 × 18 = 216 9 × 8 = 72 < 0.01 −66.67% 10 × 10 = 100 9 × 9 = 81 < 0.01 −19.00%
majority 5 / 1 17 9 × 24 = 216 8 × 16 = 128 < 0.01 −40.74% 11 × 11 = 121 10 × 11 = 110 < 0.01 −9.09%
majority_5_r1 5 / 1 17 10 × 23 = 230 9 × 16 = 144 < 0.01 −37.39% 10 × 11 = 110 9 × 12 = 108 < 0.01 −1.82%
newtag 8 / 1 17 12 × 25 = 300 10 × 12 = 120 < 0.01 −60.00% 11 × 11 = 121 7 × 11 = 77 < 0.01 −36.36%
XOR5_R1 5 / 1 26 14 × 32 = 448 10 × 19 = 190 0.01 −57.59% 14 × 14 = 196 13 × 10 = 130 < 0.01 −33.67%
1bitAdderMaj 3 / 1 29 14 × 35 = 490 13 × 30 = 390 0.01 −20.41% 18 × 18 = 324 18 × 15 = 270 < 0.01 −16.67%
cm82a 5 / 3 42 26 × 48 = 1248 16 × 21 = 336 0.08 −73.08% 25 × 25 = 625 16 × 23 = 368 0.01 −41.12%
2bitAdderMaj 5 / 2 54 27 × 62 = 1674 22 × 36 = 792 0.08 −52.69% 29 × 28 = 812 19 × 29 = 551 0.02 −32.14%
xor5Maj 5 / 1 70 31 × 78 = 2418 26 × 52 = 1352 0.26 −44.09% 30 × 43 = 1290 29 × 39 = 1131 0.06 −12.33%
parity 16 / 1 103 48 × 119 = 5712 35 × 65 = 2275 5.08 −60.17% 48 × 48 = 2304 39 × 41 = 1599 0.09 −30.60%

Average Difference −52.44% −20.04%

Runtime values are in seconds; w, h and A are the width, height and resulting area of the layout respectively (lower is better); the area difference ∆A
compares the layout before and after optimization. For the first five benchmark functions, NanoPlaceR found the optimal layout already, therefore, no further
optimization is possible. The average difference is calculated based on all sub-optimal layouts.

Table II: Comparative experimental evaluation of the proposed wiring reduction algorithm on layouts generated by the heuristic
physical design algorithm ortho [10].

BENCHMARK CIRCUIT [58], [59] ORTHO [10] WIRING REDUCTION DIFFERENCE

Name I / O |N | w × h = A |W | CP w × h = A |W | CP t[s] ∆A ∆|W | ∆CP

c17 5 / 2 8 10 × 13 = 130 63 21 8 × 11 = 88 51 17 < 0.01 −32.31% −19.05% −19.05%
c432 36 / 7 414 208 × 466 = 96928 35754 673 193 × 389 = 75077 31369 581 0.97 −22.54% −12.26% −13.67%
c499 41 / 32 816 454 × 864 = 392256 88594 1317 309 × 638 = 197142 65089 946 21.81 −49.74% −26.53% −28.17%
c880 60 / 26 639 328 × 748 = 245344 67890 1075 274 × 624 = 170976 58363 897 6.61 −30.31% −14.03% −16.56%
c1355 41 / 32 1064 494 × 1176 = 580944 110557 1669 383 × 935 = 358105 90494 1317 41.04 −38.36% −18.15% −21.09%
c1908 33 / 25 813 435 × 876 = 381060 98201 1310 352 × 678 = 238656 80163 1029 13.34 −37.37% −18.73% −21.45%
c2670 157 / 63 1463 772 × 1672 = 1290784 309743 2434 649 × 1356 = 880044 261660 1995 83.11 −31.82% −15.52% −18.04%
c3540 50 / 22 1987 931 × 2188 = 2037028 445193 3118 857 × 1828 = 1566596 396523 2684 152.05 −23.09% −10.93% −13.92%
c5315 178 / 123 3628 1884 × 3940 = 7422960 1628867 5787 1572 × 3206 = 5039832 1377142 4741 1681.55 −32.10% −15.45% −18.07%
c6288 32 / 32 6467 2273 × 6628 = 15065444 844173 8900 2215 × 5385 = 11927775 752370 7599 3441.68 −20.83% −10.87% −14.62%
c7552 206 / 107 4501 2139 × 4837 = 10346343 2243213 6970 1751 × 3722 = 6517222 1808281 5467 4829.12 −37.01% −19.39% −21.56%
dec 8 / 256 320 673 × 472 = 317656 168258 1144 256 × 465 = 119040 66307 720 106.95 −62.53% −60.59% −37.06%
ctrl 7 / 25 409 218 × 423 = 92214 26396 640 160 × 366 = 58560 22098 525 2.18 −36.50% −16.25% −17.97%
router 60 / 3 490 257 × 557 = 143149 53292 813 245 × 391 = 95795 42511 635 4.52 −33.08% −20.23% −21.89%
int2float 11 / 7 545 251 × 580 = 145580 47139 828 230 × 514 = 118220 42975 741 1.60 −18.79% −8.83% −10.51%
cavlc 10 / 11 1600 658 × 1668 = 1097544 282450 2325 617 × 1453 = 896501 257646 2069 49.76 −18.32% −8.78% −11.01%
priority 128 / 8 2349 988 × 2484 = 2454192 664415 3471 961 × 1892 = 1818212 575032 2852 272.85 −25.91% −13.45% −17.83%
adder 256 / 129 2541 1279 × 2797 = 3577363 765201 4075 769 × 2038 = 1567222 526696 2806 1521.25 −56.19% −31.17% −31.14%
i2c 136 / 127 2728 1480 × 2978 = 4407440 1061867 4451 1155 × 2602 = 3005310 917563 3752 721.20 −31.81% −13.59% −15.70%
max 512 / 130 6110 3110 × 6638 = 20644180 5309831 9747 2443 × 5780 = 14120540 4618748 8222 18307.73 −31.60% −13.02% −15.65%
bar 135 / 128 6672 3306 × 7094 = 23452764 3959962 10399 3039 × 6059 = 18413301 3601381 9097 10240.56 −21.49% −9.06% −12.52%

Average Difference −32.94% −17.90% −18.93%

Runtime values are in seconds; w, h and A are the width, height and resulting area (in tiles) of the layout, respectively; |W | and CP indicate the number of
wire segments and the length of the critical path, respectively; the area, number of wire segments and critical path length difference ∆A, ∆|W | and ∆CP ,
compare the layout before and after optimization, lower is better.

by Input Ordering SDN, which produces even smaller layouts
than ortho, the number of wire segments was reduced by
13.89% on average, resulting in an average area reduction and
critical path shortening of 22.35% and 12.85%, respectively.

D. Post-Layout Optimization

For the proposed post-layout optimization algorithm pre-
sented in Section IV-D, which combines gate relocation and
wiring reduction, we again took layouts created by the heuris-
tic physical design approach ortho [10] for the four sets of
benchmark functions, ranging from logic networks with 4
nodes to 6672 [13], [57], [58], [59]. The obtained data is
summarized in Table IV.

The number of maximum gate relocations was set as fol-
lows, to ensure the optimization does not exceed a time limit
of 6 h:

m(A) =

max if A < 100 000,

1 if 100 000 ≤ A < 20 000 000,

0 if A ≥ 20 000 000.

Here, m(A) represents the number of gate relocations based
on A, the area in tiles of the layout to optimize. The bound-
aries depending on A have been determined in experimental
evaluations, but can still differ depending on the layout to
be optimized, but act as a rough estimate. Note that when
setting m to max, not every tile is tested, as only valid and

12

Table III: Comparative experimental evaluation of the proposed wiring reduction algorithm on layouts generated by the heuristic
physical design algorithm Input Ordering SDN [48].

BENCHMARK CIRCUIT [58], [59] INPUT ORDERING SDN [48] WIRING REDUCTION DIFFERENCE

Name I / O |N | w × h = A |W | CP w × h = A |W | CP t[s] ∆A ∆|W | ∆CP

c17 5 / 2 8 7 × 10 = 70 37 16 7 × 10 = 70 37 16 < 0.01 ±0.00 ±0.00 ±0.00
c432 36 / 7 414 198 × 429 = 84942 36096 626 186 × 339 = 63054 29923 524 1.87 −25.77% −17.10% −16.29%
c499 41 / 32 816 405 × 716 = 289980 79030 1120 310 × 608 = 188480 63214 917 11.74 −35.00% −20.01% −18.12%
c880 60 / 26 639 278 × 666 = 185148 65996 937 259 × 540 = 139860 54641 792 5.18 −24.46% −17.21% −15.47%
c1355 41 / 32 1064 406 × 1119 = 454314 103685 1524 357 × 1082 = 386274 97105 1438 15.43 −14.98% −6.35% −5.64%
c1908 33 / 25 813 389 × 739 = 287471 89513 1127 344 × 630 = 216720 77653 973 8.51 −24.61% −13.25% −13.66%
c2670 157 / 63 1463 675 × 1466 = 989550 296443 2128 623 × 1254 = 781242 260282 1864 36.74 −21.05% −12.20% −12.41%
c3540 50 / 22 1987 874 × 2012 = 1758488 436723 2885 823 × 1738 = 1430374 392045 2560 113.42 −18.66% −10.23% −11.27%
c5315 178 / 123 3628 1687 × 3498 = 5901126 1608953 5141 1533 × 3035 = 4652655 1428874 4524 703.17 −21.16% −11.19% −12.00%
c6288 32 / 32 6467 1330 × 5714 = 7599620 705119 7043 1310 × 5125 = 6713750 651671 6434 714.17 −11.66% −7.58% −8.65%
c7552 206 / 107 4501 1890 × 4200 = 7938000 2031870 6075 1699 × 3660 = 6218340 1812236 5344 1961.71 −21.66% −10.81% −12.03%
dec 8 / 256 320 418 × 466 = 194788 102746 883 252 × 453 = 114156 65624 704 32.53 −41.39% −36.13% −20.27%
ctrl 7 / 25 409 167 × 369 = 61623 22835 535 135 × 349 = 47115 20147 483 0.85 −23.54% −11.77% −9.72%
router 60 / 3 490 251 × 449 = 112699 51040 699 241 × 319 = 76879 39405 559 4.00 −31.78% −22.80% −20.03%
int2float 11 / 7 545 233 × 546 = 127218 44731 776 214 × 499 = 106786 40899 710 1.13 −16.06% −8.57% −8.51%
cavlc 10 / 11 1600 604 × 1544 = 932576 263276 2147 573 × 1413 = 809649 245752 1985 22.60 −13.18% −6.66% −7.55%
priority 128 / 8 2349 826 × 2094 = 1729644 592669 2919 801 × 1694 = 1356894 503829 2494 185.56 −21.55% −14.99% −14.56%
adder 256 / 129 2541 899 × 2668 = 2398532 858682 3566 898 × 1907 = 1712486 662717 2804 122.10 −28.60% −22.82% −21.37%
i2c 136 / 127 2728 1288 × 2655 = 3419640 1028038 3940 1123 × 2347 = 2635681 907159 3467 335.98 −22.93% −11.76% −12.01%
max 512 / 130 6110 2855 × 6422 = 18334810 4850513 9276 2412 × 5026 = 12122712 3830618 7437 15656.79 −33.88% −21.03% −19.83%
bar 135 / 128 6672 2540 × 6441 = 16360140 3514605 8980 2396 × 5640 = 13513440 3195255 8035 7398.71 −17.40% −9.09% −10.52%

Average Difference −22.35% −13.89% −12.85%

Runtime values are in seconds; w, h and A are the width, height and resulting area (in tiles) of the layout, respectively; |W | and CP indicate the number of
wire segments and the length of the critical path, respectively; the area, number of wire segments and critical path length difference ∆A, ∆|W | and ∆CP ,
compare the layout before and after optimization, lower is better.

Table IV: Comparative experimental evaluation of the proposed post-layout optimization algorithm.

BENCHMARK CIRCUIT [13], [57] ORTHO [10] GATE RELOCATION DIFFERENCE WIRING REDUCTION DIFFERENCE POST-LAYOUT OPTIMIZATION DIFFERENCE

Name I / O |N | w × h = A w × h = A t[s] ∆A w × h = A t[s] ∆A w × h = A t[s] m ∆A

2:1 MUX 3 / 1 4 6 × 7 = 42 6 × 4 = 24 < 0.01 −42.86% 6 × 5 = 30 < 0.01 −28.57% 6 × 4 = 24 < 0.01 max −42.86%
XOR 2 / 1 4 5 × 7 = 35 4 × 7 = 28 < 0.01 −20.00% 5 × 6 = 30 < 0.01 −14.29% 5 × 4 = 20 < 0.01 max −42.86%
Full Adder 3 / 2 5 8 × 10 = 80 6 × 9 = 54 < 0.01 −32.50% 7 × 8 = 56 < 0.01 −30.00% 6 × 7 = 42 < 0.01 max −47.50%
XNOR 2 / 1 6 6 × 8 = 48 4 × 6 = 24 < 0.01 −5.00% 6 × 6 = 36 < 0.01 −25.00% 5 × 7 = 35 < 0.01 max −27.08%
Half Adder 2 / 2 6 9 × 8 = 72 4 × 6 = 24 < 0.01 −66.67% 7 × 8 = 56 < 0.01 −22.22% 4 × 6 = 24 < 0.01 max −66.67%
Parity Gen. 3 / 1 10 9 × 13 = 117 7 × 9 = 63 < 0.01 −46.15% 9 × 10 = 90 < 0.01 −23.08% 7 × 9 = 63 < 0.01 max −46.15%
clpl 11 / 5 10 17 × 25 = 425 9 × 13 = 117 < 0.01 −72.47% 13 × 24 = 312 < 0.01 −26.59% 10 × 12 = 120 0.01 max −71.76%
t 5 / 2 11 10 × 16 = 160 7 × 8 = 56 < 0.01 −65.00% 9 × 12 = 108 < 0.01 −32.50% 7 × 10 = 70 < 0.01 max −56.25%
t_5 5 / 2 11 10 × 16 = 160 7 × 9 = 63 < 0.01 −60.62% 9 × 13 = 117 < 0.01 −26.88% 6 × 7 = 42 < 0.01 max −73.75%
b1_r2 3 / 4 12 13 × 17 = 221 7 × 9 = 63 < 0.01 −71.49% 9 × 13 = 117 < 0.01 −47.06% 8 × 12 = 96 < 0.01 max −56.56%
Parity Check. 4 / 1 15 12 × 19 = 228 8 × 11 = 88 < 0.01 −61.40% 12 × 15 = 180 < 0.01 −21.05% 9 × 10 = 90 < 0.01 max −60.53%
1bitAdderAOIG 3 / 2 15 12 × 18 = 216 9 × 8 = 72 < 0.01 −66.67% 11 × 16 = 176 < 0.01 −18.52% 10 × 13 = 130 < 0.01 max −39.81%
majority 5 / 1 17 9 × 24 = 216 8 × 16 = 128 < 0.01 −40.74% 9 × 18 = 162 < 0.01 −25.00% 8 × 14 = 112 < 0.01 max −48.15%
majority_5_r1 5 / 1 17 10 × 23 = 230 9 × 16 = 144 < 0.01 −37.39% 10 × 15 = 150 < 0.01 −34.78% 9 × 14 = 126 < 0.01 max −45.22%
newtag 8 / 1 17 12 × 25 = 300 10 × 12 = 120 < 0.01 −60.00% 12 × 20 = 240 < 0.01 −20.00% 10 × 12 = 120 < 0.01 max −60.00%
XOR5_R1 5 / 1 26 14 × 32 = 448 10 × 19 = 190 0.01 −57.59% 12 × 23 = 276 < 0.01 −38.39% 10 × 19 = 190 0.01 max −57.59%
1bitAdderMaj 3 / 1 29 14 × 35 = 490 13 × 30 = 390 0.01 −20.41% 14 × 28 = 392 < 0.01 −20.00% 13 × 28 = 364 0.01 max −25.71%
cm82a 5 / 3 42 26 × 48 = 1248 16 × 21 = 336 0.08 −73.08% 22 × 35 = 770 < 0.01 −38.30% 16 × 23 = 368 0.06 max −70.51%
2bitAdderMaj 5 / 2 54 27 × 62 = 1674 22 × 36 = 792 0.08 −52.69% 24 × 47 = 1128 0.01 −32.62% 20 × 39 = 780 0.09 max −53.41%
xor5Maj 5 / 1 70 31 × 78 = 2418 26 × 52 = 1352 0.26 −44.09% 30 × 64 = 1920 0.01 −20.60% 26 × 48 = 1248 0.24 max −48.39%
parity 16 / 1 103 48 × 119 = 5712 35 × 65 = 2275 5.08 −60.17% 48 × 75 = 3600 0.03 −36.97% 39 × 52 = 2028 1.71 max −64.50%
c17 5 / 2 8 10 × 13 = 130 8 × 11 = 88 < 0.01 −32.21% 8 × 11 = 88 < 0.01 −32.31% 8 × 11 = 88 < 0.01 max −32.31%
c432 36 / 7 414 208 × 466 = 96928 timeout limit reached 193 × 389 = 75077 0.75 −22.54% 192 × 324 = 62208 7004.73 max −35.82%
c499 41 / 32 816 454 × 864 = 392256 timeout limit reached 309 × 638 = 197142 21.81 −49.74% 295 × 614 = 181130 49.21 1 −53.82%
c880 60 / 26 639 328 × 748 = 245344 timeout limit reached 274 × 624 = 170976 6.61 −30.31% 264 × 580 = 153120 33.57 1 −37.59%
c1355 41 / 32 1064 494 × 1176 = 580944 timeout limit reached 383 × 935 = 358105 41.04 −38.36% 378 × 876 = 331128 105.19 1 −43.00%
c1908 33 / 25 813 435 × 876 = 381060 timeout limit reached 352 × 678 = 238656 13.34 −37.37% 399 × 641 = 217299 41.33 1 −42.98%
c2670 157 / 63 1463 772 × 1672 = 1290784 timeout limit reached 649 × 1356 = 880044 83.11 −31.82% 642 × 1268 = 814056 394.51 1 −36.93%
c3540 50 / 22 1987 931 × 2188 = 2037028 timeout limit reached 857 × 1828 = 1566596 152.02 −23.09% 853 × 1726 = 1472278 905.54 1 −27.72%
c5315 178 / 123 3628 1884 × 3940 = 7422960 timeout limit reached 1572 × 3206 = 5039832 1681.55 −32.10% 1528 × 3093 = 4726104 12358.60 1 −36.33%
c6288 32 / 32 6467 2273 × 6628 = 15065444 timeout limit reached 2215 × 5385 = 11927775 3441.68 −20.83% 2192 × 4839 = 10607088 16250.49 1 −29.59%
c7552 206 / 107 4501 2139 × 4837 = 10346343 timeout limit reached 1751 × 3722 = 6517222 4829.13 −37.01% 1726 × 3557 = 6139382 19173.93 1 −40.66%
dec 8 / 256 320 673 × 472 = 317656 timeout limit reached 256 × 465 = 119040 106.95 −62.53% 246 × 459 = 112914 165.50 1 −64.45%
ctrl 7 / 25 409 218 × 423 = 92214 timeout limit reached 160 × 366 = 58560 2.18 −36.50% 145 × 261 = 37845 9777.33 max −58.96%
router 60 / 3 490 257 × 557 = 143149 timeout limit reached 245 × 391 = 95795 3.22 −33.08% 243 × 358 = 86994 12.19 1 −39.23%
int2float 11 / 7 545 251 × 580 = 145580 timeout limit reached 230 × 514 = 118220 1.60 −18.79% 217 × 490 = 106330 11.86 1 −26.96%
cavlc 10 / 11 1600 658 × 1668 = 1097544 timeout limit reached 617 × 1453 = 896501 49.76 −18.32% 607 × 1336 = 810952 378.81 1 −26.11%
priority 128 / 8 2349 988 × 2484 = 2454192 timeout limit reached 961 × 1892 = 1818212 272.85 −25.91% 921 × 1758 = 1619118 1652.23 1 −34.03%
adder 256 / 129 2541 1279 × 2797 = 3577363 timeout limit reached 769 × 2038 = 1567222 1521.25 −56.19% 764 × 1841 = 1406524 4220.36 1 −60.68%
i2c 136 / 127 2728 1480 × 2978 = 4407440 timeout limit reached 1155 × 2602 = 3005310 721.20 −31.81% 1108 × 2447 = 2711276 5027.09 1 −38.48%
max 512 / 130 6110 3110 × 6638 = 20644180 timeout limit reached 2443 × 5780 = 14120540 18307.73 −31.60% 2443 × 5780 = 14120540 18307.73 0 −31.60%
bar 135 / 128 6672 3306 × 7094 = 23452764 timeout limit reached 3039 × 6059 = 18413301 10240.56 −21.49% 3039 × 6059 = 18413301 10240.56 0 −21.49%

Average Difference −26.98% −30.34% −45.58%

Runtime values are in seconds; w, h and A are the width, height and resulting area of the layout respectively; timeout limit was set to 6 h; the area difference
∆A compares the layout before and after optimization.

empty positions are determined first, which also have to be
better than the previous position. For large layouts, only trying
one valid position usually yields a good trade-off between
scalability and quality, which will also be discussed based on
further experiments in Section V-E

While gate relocation achieved a significant average area re-
duction of 52.44% for smaller benchmark functions as shown
in Table I, it failed to converge for larger benchmarks [58], [59]
within a 6-hour timeout limit. When considering all benchmark
circuits, gate relocation yielded an average area reduction

of only 26.98% and proved infeasible for layouts exceeding
approximately 50 000 tiles.

In comparison, the wiring reduction approach achieved an
average area reduction of 30.34%. However, it resulted in
smaller reductions for smaller benchmarks when compared to
gate relocation.

Integrating both approaches into a unified post-layout opti-
mization algorithm resulted in a substantial average reduction
in layout area of 45.58%, effectively almost halving the
layout size. This hybrid method surpassed gate relocation

13

0 20 40 60 80 100
Maximum Gate Relocations

0

200

400

600

800

R
un

tim
e

O
pt

im
iz

at
io

n
(s

ec
)

24

26

28

30

32

A
re

a
R

ed
uc

tio
n

(%
)

Fig. 16: Area reduction compared to the total runtime for
different settings of the maximum number of gate relocations
for the benchmark functions c432 using the proposed post-
layout optimization algorithm.

in efficiency for nearly all smaller benchmark functions and
matched the scalability of the wiring reduction approach. For
the two largest benchmark functions, namely max and bar,
the algorithm defaulted to solely using wiring reduction due
to their extensive size, each comprising over 20 million tiles.

E. Maximum Gate Relocations
To elucidate the optimal setting for the maximum number of

gate relocations, Fig. 16 presents the trade-off between area
reduction and runtime across various values of m. For the
benchmark function c432, Fig. 16 plots the area reductions for
different values for m, the number of maximum gate reloca-
tions. Notably, a significant increase in layout area reduction
is observed when m is increased from 0 (indicating wiring
reduction only) to 1 (where only the most favorable position
is tested for gate relocation). Additionally, the increment in
runtime is minimal and tends to increase almost linearly with
further relocations.

However, the area reduction does not consistently improve
with an increase in the number of maximal gate relocations.
In some cases, it may result in the repositioning of gates to
less optimal locations. Additionally, for large layouts, trying
every possible location leads to increased runtime and might
be impractical. Consequently, limiting the number of gate
relocations to only try a single position offers the most
effective balance between efficiency and scalability.

The chart in Fig. 16 also reveals that even with m = 100
maximum gate relocations, the improvement remain sub-
optimal when compared to the improvement possible with
m = max as shown in Table IV. For the benchmark function
c432, post-layout optimization yields a reduction of 32.41%
for m = 100, compared to a potential reduction of 35.82%
when m is set to the maximum.

For scalability reasons, m should be set to 1 when optimiz-
ing large layouts, as most of the improvement can already be
achieved with that setting.

VI. CONCLUSION

As Field-coupled Nanocomputing (FCN) transitions from
theoretical exploration to practical implementation, there is

an increasing need for optimization methods that enhance
physical designs post-placement and routing. This study in-
troduced novel optimization methods tailored to FCN layouts
utilizing the 2DDWave clocking scheme. These algorithms are
publicly accessible and have been incorporated into the fiction
framework, as part of the Munich Nanotech Toolkit (MNT).

Our proposed methods synergize the efficiency of gate
relocation with the scalability of wiring reduction, significantly
refining the performance of existing heuristic algorithms such
as ortho. This integration achieves an average reduction of
45.58% in layout area, as validated by applications to well-
established benchmark sets, while being highly scalable. By
minimizing the layout area during the early stages of the
physical design phase, this approach offers substantial ben-
efits. It not only reduces the computational load required for
simulations but also leads to cost savings in the manufacturing
process. Furthermore, it contributes to enhanced device perfor-
mance by shortening critical path lengths, thereby decreasing
delay and increasing throughput.

Optimizing layouts is a critical milestone in advancing
Field-coupled Nanocomputing, as it significantly bridges the
gap between the capabilities of conventional CMOS and this
class of emerging technologies. This progress is driven not
only by advancements in manufacturing but also by the devel-
opment of more area-efficient layouts, which are essential for
realizing complex functions at a scale previously achievable
only with conventional technologies.

REFERENCES

[1] K. M. U. Ahmed et al., “A Review of Data Centers Energy Consumption
And Reliability Modeling,” IEEE Access, 2021.

[2] S. Samsi et al., “From Words to Watts: Benchmarking the Energy Costs
of Large Language Model Inference,” 2023.

[3] A. Andrae and T. Edler, “On Global Electricity Usage of Communication
Technology: Trends to 2030,” Challenges, vol. 6, pp. 117–157, 2015.

[4] N. Anderson and S. Bhanja, Eds., Field-Coupled Nanocomputing -
Paradigms, Progress, and Perspectives. Springer, 2014.

[5] R. Achal et al., “Lithography for robust and editable atomic-scale silicon
devices and memories,” Nat. Commun., vol. 9, no. 1, 2018.

[6] N. Pavliček et al., “Tip-induced passivation of dangling bonds on
hydrogenated Si(100)-2×1,” APL, vol. 111, no. 5, p. 053104, 2017.

[7] F. Altincicek, “Atomically Defined Wires on P-Type Silicon,” Bull. Am.
Phys. Soc., 2022.

[8] T. Huff et al., “Binary atomic silicon logic,” Nat. Electron., vol. 1, no. 12,
pp. 636–643, 2018.

[9] M. Haider et al., “Controlled Coupling and Occupation of Silicon
Atomic Quantum Dots at Room Temperature,” PRL, vol. 102, p. 046805,
2009.

[10] M. Walter et al., “Scalable Design for Field-Coupled Nanocomputing
Circuits,” in ASP-DAC, 2019, pp. 197–202.

[11] ——, “One-pass Synthesis for Field-coupled Nanocomputing Technolo-
gies,” in ASP-DAC, 2021, pp. 574–580.

[12] ——, “An Exact Method for Design Exploration of Quantum-dot
Cellular Automata,” in DATE, 2018, pp. 503–508.

[13] G. Fontes et al., “Placement and Routing by Overlapping and Merging
QCA Gates,” in ISCAS, 2018.

[14] S. Hofmann et al., “Late Breaking Results From Hybrid Design Au-
tomation for Field-coupled Nanotechnologies,” in DAC, 2023.

[15] ——, “Thinking Outside the Clock: Physical Design for Field-coupled
Nanocomputing with Deep Reinforcement Learning,” in ISQED, 2024.

[16] M. Walter et al., “Placement and Routing for Tile-based Field-coupled
Nanocomputing Circuits is NP-complete,” J. Emerg. Technol. Comput.
Syst., vol. 15, no. 3, 2019.

[17] Y. T. Chang et al., “Post-Placement Power Optimization with Multi-Bit
Flip-Flops,” in ICCAD, 2010, pp. 218–223.

[18] V. Bertacco et al., “Post-Placement Rewiring and Rebuffering by Ex-
haustive Search for Functional Symmetries,” in ICCAD, 2005, pp. 56–63.

14

[19] S. S. Kiran Pentapati et al., “Pin-3D: A Physical Synthesis and Post-
Layout Optimization Flow for Heterogeneous Monolithic 3D ICs,” in
ICCAD, 2020.

[20] X. Gao et al., “Post-Layout Simulation Driven Analog Circuit Sizing,”
Science China Information Sciences, vol. 67, no. 4, 2024.

[21] S. Hofmann et al., “Post-Layout Optimization for Field-coupled Nan-
otechnologies,” in NANOARCH, 2023.

[22] P. Hart et al., “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[23] S. Hofmann et al., “Late Breaking Results: Wiring Reduction for Field-
coupled Nanotechnologies,” in DAC, 2024.

[24] J. Drewniok et al., “QuickSim: Efficient and Accurate Physical Sim-
ulation of Silicon Dangling Bond Logic,” in IEEE-NANO, 2023, pp.
817–822.

[25] ——, “The Need for Speed: Efficient Exact Simulation of Silicon
Dangling Bond Logic,” in ASP-DAC, 2024.

[26] S. Hofmann et al., “Scalable Physical Design for Silicon Dangling Bond
Logic: How a 45 ◦ Turn Prevents the Reinvention of the Wheel,” in
IEEE-NANO, 2023, pp. 872–877.

[27] M. Walter et al., “fiction: An Open Source Framework for the Design
of Field-coupled Nanocomputing Circuits,” 2019.

[28] ——, “The Munich Nanotech Toolkit (MNT),” in IEEE-NANO, 2024,
pp. 454–459.

[29] S. Hofmann et al., “MNT Bench: Benchmarking Software and Layout
Libraries for Field-coupled Nanocomputing,” in DATE, 2024.

[30] C. Lent et al., “Quantum Cellular Automata: The Physics of Computing
with Arrays of Quantum Dot Molecules,” in PhysComp, 1994, pp. 5–13.

[31] J. Pitters et al., “Atomically Precise Manufacturing of Silicon Electron-
ics,” ACS Nano, 2024.

[32] D. Reis et al., “A Methodology for Standard Cell Design for QCA,” in
ISCAS, 2016, pp. 2114–2117.

[33] M. Walter et al., “Hexagons Are the Bestagons: Design Automation for
Silicon Dangling Bond Logic,” in DAC, 2022, pp. 739–744.

[34] T. Huff et al., “Atomic White-Out: Enabling Atomic Circuitry through
Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon
Surface,” ACS nano, vol. 11 9, pp. 8636–8642, 2017.

[35] J. Pitters et al., “Charge Control of Surface Dangling Bonds Using
Nanoscale Schottky Contacts,” ACS nano, vol. 5, pp. 1984–9, 2011.

[36] R. Wolkow et al., “Silicon Atomic Quantum Dots Enable Beyond-
CMOS Electronics,” in Field-Coupled Nanocomputing, 2013.

[37] M. Rashidi et al., “Initiating and Monitoring the Evolution of Single
Electrons Within Atom-Defined Structures,” PRL, vol. 121, p. 166801,
2018.

[38] R. Lupoiu et al., “Automated Atomic Silicon Quantum Dot Circuit
Design via Deep Reinforcement Learning,” ArXiv, vol. abs/2204.06288,
2022.

[39] S. Ng et al., “SiQAD: A Design and Simulation Tool for Atomic Silicon
Quantum Dot Circuits,” IEEE TNANO, vol. 19, pp. 137–146, 2020.

[40] J. Drewniok et al., “Minimal Design of SiDB Gates: An Optimal Basis
for Circuits Based on Silicon Dangling Bonds,” in NANOARCH, 2023.

[41] V. Vankamamidi et al., “Clocking and Cell Placement for QCA,” in
IEEE-NANO, vol. 1, 2006, pp. 343–346.

[42] C. Campos et al., “USE: A Universal, Scalable and Efficient clocking
scheme for QCA,” IEEE TCAD, vol. 35, pp. 513–517, 2016.

[43] M. Goswami et al., “An Efficient Clocking Scheme for Quantum-dot
Cellular Automata,” Int. J. Electron. Lett., vol. 8, no. 1, pp. 83–96,
2020.

[44] K. Hennessy and C. S. Lent, “Clocking of Molecular Quantum-dot
Cellular Automata,” J. Vac. Sci. Technol. B, vol. 19, no. 5, pp. 1752–
1755, 2001.

[45] C. Lent and P. Tougaw, “A Device Architecture for Computing with
Quantum Dots,” Proc. IEEE, vol. 85, no. 4, pp. 541–557, 1997.

[46] F. Sill Torres et al., “Synchronization of Clocked Field-Coupled Cir-
cuits,” in IEEE-NANO, 2018.

[47] F. Sill Torres et al., “On the Impact of the Synchronization Constraint
and Interconnections in Quantum-dot Cellular Automata,” MICPRO,
vol. 76, pp. 103–109, 2020.

[48] M. Walter et al., “Versatile Signal Distribution Networks for Scalable
Placement and Routing of Field-coupled Nanocomputing Technologies,”
in ISVLSI, 2023.

[49] W. Porod et al., Nanomagnet Logic (NML). Springer Berlin Heidelberg,
2014, pp. 21–32.

[50] F. Riente et al., “ToPoliNano: A CAD Tool for Nano Magnetic Logic,”
IEEE TCAD, vol. 36, no. 7, pp. 1061–1074, 2017.

[51] R. E. Formigoni et al., “Ropper: A Placement and Routing Framework
for Field-Coupled Nanotechnologies,” in SBCCI. ACM, 2019.

[52] Y. Li et al., “Field-Coupled Nanocomputing Placement and Routing with
Genetic and A* Algorithms,” IEEE TCAS-I, vol. 69, no. 11, pp. 4619 –
4631, 2022.

[53] G. Li et al., “A QCA placement and routing algorithm based on the SA
algorithm,” Int. J. Electron, 2023.

[54] B. Zhang et al., “Quantum-dot Cellular Automata Placement and Rout-
ing with Hierarchical Algorithm,” Nano Commun. Netw., vol. 39, p.
100495, 2024.

[55] S. Hofmann et al., “A* is Born: Efficient and Scalable Physical Design
for Field-coupled Nanocomputing,” in IEEE-NANO, 2024, pp. 80–85.

[56] ——, “Physical Design for Field-coupled Nanocomputing with Discre-
tionary Cost Objectives,” in LASCAS, 2025.

[57] A. Trindade et al., “A Placement and Routing Algorithm for Quantum-
dot Cellular Automata,” in SBCCI, 2016.

[58] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
benchmark circuits and a targeted translator in FORTRAN,” in ISCAS,
1985.

[59] L. G. Amarù, P.-E. Gaillardon, and G. D. Micheli, “The EPFL Combi-
national Benchmark Suite,” in IWLS, 2015.

[60] M. Walter et al., “Verification for Field-coupled Nanocomputing Cir-
cuits,” in DAC, 2020.

Simon Hofmann (S’23) received his Master’s de-
gree in Electrical Engineering from the Technical
University of Munich (TUM), Germany, in 2022. He
is currently pursuing a Ph.D. at the Chair for Design
Automation at the same university. His primary
research focus is on design automation for Field-
coupled Nanotechnologies (FCN).

Marcel Walter (S’18–M’22) received his Ph.D.
degree in Computer Science from the University
of Bremen, Germany, in 2021 for his work on
algorithms for the physical design of emerging post-
CMOS nanotechnologies. He is currently a Postdoc
at the Chair for Design Automation at the Technical
University of Munich (TUM) in Germany. He has
also been working as a Visiting Professor for the
University of Bremen in 2024. Furthermore, he is the
initiator and maintainer of the "fiction" framework
for the logic synthesis, physical design, verification,

and simulation of Field-coupled Nanotechnologies.

Robert Wille (M’06–SM’15) is a Full and Dis-
tinguished Professor at the Technical University of
Munich, Germany, and Chief Scientific Officer at the
Software Competence Center Hagenberg, Austria.
He received the Diploma and Dr.-Ing. degrees in
Computer Science from the University of Bremen,
Germany, in 2006 and 2009, respectively. Since then,
he worked at the University of Bremen, the German
Research Center for Artificial Intelligence (DFKI),
the University of Applied Science of Bremen, the
University of Potsdam, and the Technical University

Dresden. From 2015 until 2022, he was Full Professor at the Johannes
Kepler University Linz, Austria, until he moved to Munich. His research
interests are in the design of circuits and systems for both conventional and
emerging technologies. In these areas, he published more than 350 papers
and served in editorial boards as well as program committees of numerous
journals/conferences such as TCAD, ASP-DAC, DAC, DATE, and ICCAD.
For his research, he was awarded, e.g., with Best Paper Awards, e.g., at TCAD
and ICCAD, an ERC Consolidator Grant, a Distinguished and a Lighthouse
Professor appointment, a Google Research Award, and more.

	Introduction
	Background
	Quantum-dot Cellular Automata (QCA)
	Silicon Dangling Bonds (SiDBs)
	Technology Constraints

	Related Work: Physical Design for FCN
	Exact Approaches
	Heuristic Approaches
	Transforming QCA Layouts to SiDB Layouts

	Proposed Optimization Strategies
	Motivation
	Gate Relocation
	Wiring Reduction
	Adding Obstructions
	Determining Cuts
	Deleting Wires
	Repositioning Gates

	Post-Layout Optimization

	Experimental Evaluation
	Experimental Setup
	Gate Relocation
	Wiring Reduction
	Post-Layout Optimization
	Maximum Gate Relocations

	Conclusion
	References
	Biographies
	Simon Hofmann
	Marcel Walter
	Robert Wille

