
1

Graph-Oriented Layout Design
for Field-coupled Nanocomputing via

Parallel Multi-Objective Search Space Exploration
Simon Hofmann Graduate Student Member, IEEE, Marcel Walter Member, IEEE, and Robert Wille Senior

Member, IEEE

Abstract—Field-coupled Nanocomputing (FCN) is a post-
CMOS paradigm in which information propagates through near-
field interactions rather than charge flow, enabling ultra-low-
power, high-density logic. Translating netlists into manufac-
turable, cell-level layouts therefore becomes a pivotal challenge.
Existing FCN physical design tools optimize only a single cost
metric, typically footprint or runtime. As a result, designers must
choose between exponentially slow exact solvers and fast yet area-
intensive heuristics. We present the first FCN physical design
engine that closes this gap by introducing configurable effort
modes. These modes let users trade runtime for solution quality
while simultaneously optimizing any discretionary objective, e. g.
area, wire segments, crossings, or delay, thereby integrating data
from physical simulation and manufacturing constraints. Our
open-source implementation, released as part of the Munich
Nanotech Toolkit, generates layouts for circuits that defeat state-
of-the-art exact solvers. On such benchmarks, it shrinks footprint
by an average of 73.07%, reduces crossings by 19.10%, and
cuts wire segments by 54.47% relative to a leading heuristic
baseline. Even after post-layout optimization of the baseline, our
approach still achieves mean gains of 25.99% in area, 37.82% in
crossings, and 25.96% in wire segments. These results establish
the proposed engine as a compelling solution for highly optimized,
large-scale standard-cell FCN design.

Index Terms—Physical design, quantum cellular automata,
quantum dots.

I. INTRODUCTION

F IELD-COUPLED Nanocomputing (FCN, [1]) comprises
a family of post-CMOS paradigms that exploit near-field

interactions, rather than electric current, to transmit informa-
tion. This approach enables logic at nanoscales while promis-
ing drastic reductions in energy consumption. Over the past
few years, progress on four fronts has markedly accelerated
FCN research:

1) Device fabrication. Advances in STM-based hydro-
gen lithography now allow the precise creation of
functional elements [2] based on Silicon Dangling
Bonds (SiDBs, [3]).

2) Modeling and simulation. SiDB logic can now be
conceived and simulated efficiently using advanced gate
designers and simulation engines [4]–[11].

Simon Hofmann, Marcel Walter, and Robert Wille are with the Chair
for Design Automation, Technical University of Munich, Munich, Germany.
Simon Hofmann, Marcel Walter, and Robert Wille are also with the Munich
Quantum Software Company GmbH, Garching near Munich, Germany. Robert
Wille is also with the Software Competence Center Hagenberg GmbH, Hagen-
berg, Austria. E-mail: {simon.t.hofmann, marcel.walter, robert.wille}@tum.de

3) Physical design. Dedicated placement, routing, and opti-
mization flows translate gate-level netlists into FCN lay-
outs, minimizing area, latency, and wiring overhead [12]–
[29].

4) Software tools. For every part of the design flow, soft-
ware tools have been developed, ranging from logic
synthesis to physical design and simulation [5], [30]–[36].

Together, these advances position FCN, with the SiDB
technology implementation in particular, as a credible con-
tender for ultra-low-power, high-density computing in the
post-CMOS era.

One of the four fronts is especially important for the success
of FCN: physical design, which must translate a gate-level
netlist into a layout, a process involving gate placement, wire
routing, and signal clocking, while coping with tight technol-
ogy constraints inherent to FCN, including clocking, signal
synchronization, and limited crossing capabilities. Existing
algorithms fall into two disjoint categories: exact approaches
that guarantee optimal solutions at the cost of exponential
runtimes, and scalable heuristics that are fast but sacrifice
significant layout area. As a result, these algorithms give
the designer no possibility to trade off runtime and solution
quality. Historically, both classes of algorithms have pursued
one single objective, namely the area footprint, as the layout
size directly determines manufacturing cost and, in physical
simulators, dominates execution time.

However, recent findings call for richer cost models. Phys-
ical simulation shows that gate robustness to external dis-
turbances can vary widely across different logic gates [37].
Wire segments, in contrast to traditional CMOS, consume the
same area as logic gates and furthermore introduce the same
propagation delay [17], [38], while wire crossings severely
complicate fabrication [39]. Moreover, multi-objective metrics,
such as the area-delay or area-crossing products are largely
unsupported.

Current algorithms cannot simultaneously optimize for such
composite, technology-aware targets, nor can they scale effort
according to design-time constraints. Consequently, physical
design methods for FCN that can bridge the gap between exact
and heuristic methods by offering graduated effort modes, and
extend their optimization engines to support multi-objective
cost functions that capture robustness, interconnect over-
heads, and number of crossings alongside area are desperately
needed.

mailto:simon.t.hofmann@tum.de
mailto:marcel.walter@tum.de
mailto:robert.wille@tum.de

2

Additionally, digital and analog CMOS physical-design
flows that balance area, timing, and power—whether by
a single weighted cost function with hand-tuned coeffi-
cients [40] or Pareto-front sweeps that enumerate many trade-
off points [41]—cannot be applied directly to FCN, whose
distinctive device rules and clocking constraints require funda-
mentally different physical design and optimization strategies.

We present the first FCN physical design engine1 that
not only lets designers dial runtime versus solution quality
through tunable effort modes, but also optimizes an arbi-
trary, user-defined mix of cost objectives, spanning, e. g.,
footprint, number of wire segments, number of crossings, or
any weighted combination thereof, enabling the integration
of insights from both simulation and manufacturing processes
into physical design. Compared to a state-of-the-art heuristic
baseline on benchmarks not solvable by exact approaches, the
proposed algorithm reduces layout area, number of crossings,
and number of wire segments by 73.07%, 19.10%, and
54.47%, respectively.

An open-source implementation on top of the fiction frame-
work [34] is available as part of the Munich Nanotech
Toolkit (MNT, [42])2 and also included in the co-design tool
MNT Designer.3 Furthermore, the generated layouts have been
included in the benchmark suite MNT Bench [43],4 replacing
the latest best known solutions for multiple benchmark cir-
cuits.

The remainder of this paper is structured as follows: Sec-
tion II reviews technical background on selected FCN tech-
nologies, as well as state-of-the-art physical design algorithms.
Section III outlines the proposed efficient and scalable phys-
ical design algorithm with discretionary cost objectives and
tunable effort modes, which is then experimentally evaluated
in Section IV. Finally, Section V concludes the paper.

II. BACKGROUND

This section first introduces the fundamentals of the two
most prominent FCN technologies, namely Quantum-dot Cel-
lular Automata (QCA, [44]) and Silicon Dangling Bonds
(SiDBs, [3]). Afterward, the physical design problem in FCN
is presented together with technological constraints inherent
to most FCN implementations. Finally, current state-of-the-art
approaches for FCN physical design are outlined.

A. Quantum-dot Cellular Automata (QCA)
In QCA [30], [39], [44]–[46], the elementary building block

is the cell: four quantum dots positioned at the corners of a
square and jointly hosting two charges. Because the Coulomb
repulsion along an edge is stronger than along a diagonal, the
charges stabilize in one of two energetically favorable corner
pairs. These charge configurations, depicted in Fig. 1a, encode
the binary states 0 and 1. In an unexcited state, the charges are
in superposition and therefore do not hold any information but
only quantum noise, which can be defined as the null state, as
seen in the rightmost QCA cell of Fig. 1a.

1Preliminary versions of this work have been published in [13], [23].
2Code: https://github.com/cda-tum/fiction.
3Code: https://github.com/cda-tum/mnt-designer.
4https://www.cda.cit.tum.de/mntbench.

(a) The 0, 1, and null
state.

(b) Wire segment propagating the
1 state.

(c) Majority gate created by ar-
ranging five QCA cells.

Fig. 1: Elementary QCA cells and compound structures,
adapted from [23].

(a) MAJ3 (b) AND (c) OR (d) Inverter

(e) Straight wire (f) Bent wire (g) Fan-out (h) Crossing

Fig. 2: Standard tiles in the QCA ONE gate library [47], taken
from [23].

When cells are placed in close proximity, the electrostatic
polarization of one cell biases its neighbor, producing a wire
segment that transmits information, as illustrated in Fig. 1b.
Additionally, the majority-of-three (MAJ3) function can be
created by arranging five QCA cells as seen in Fig. 1c, where
the QCA cells at the top, left and bottom all influence the cell
in the middle. The state of the cell in the middle is therefore the
majority of the three other cells’ states. Based on this concept,
multiple other gates can be created, like AND, OR, inverters
or crossings, to build complete QCA gate libraries [47] as seen
in Fig. 2.

B. Silicon Dangling Bonds (SiDBs)

SiDB technology replaces the four-dot QCA cell with a
two-dot element to realize the Binary-dot Logic (BDL, [48])
concept. Each quantum dot is an individual SiDB created
on a hydrogen-passivated silicon (H-Si(100)-2×1) surface: a
Scanning-Tunneling-Microscope (STM) tip selectively desorbs
a single hydrogen atom, leaving behind an atomically-sized,
chemically identical quantum dot that traps a localized
charge [3], [49]. A schematic representation of the H-Si(100)-
2×1 surface with one present quantum dot can be seen
in Fig. 3a. Advances in STM-based hydrogen lithography
now allow ultimate precision in placing these dots [2], [50]–
[53]. Exploiting this accuracy, researchers have fabricated
a fully operational SiDB OR gate with a footprint of less
than 30 nm2 [48], which, together with other blueprints for

https://github.com/cda-tum/fiction
https://github.com/cda-tum/mnt-designer
https://www.cda.cit.tum.de/mntbench

3

1 nm

(a) H-Si(100)-2×1
surface structure.

0

0

0 1

1

0 0

1

1 1

1

1

Input perturber

Output perturber

DB pairs

(b) Recreation of a binary-dot OR gate [48], adapted
from [54].

Fig. 3: SiDBs on an H-Si(100)-2×1 lattice implementing logic,
taken from [28].

1

2

2

1

4

3

3

43 2

1

4

Detailed
Placement and

Routing

Fig. 4: A 2:1 Multiplexer is placed and routed on a layout.

basic gates, form the Bestagon gate library [54]. This OR gate
is recreated in Fig. 3b, showing the four input combinations
and the resulting output state, which is 0 if both inputs are 0
and 1 otherwise.

C. Physical Design Algorithms

Physical design algorithms are essential for combining
standard FCN building blocks into layouts that realize logic
functions, yet they must operate within the stringent techno-
logical constraints of FCN devices. One example is shown
in Fig. 4, where each logic gate in the network is placed on a
layout and connected with its incoming and outgoing signals.
The remainder of the section focuses on the technological
constraints inherent to FCN physical design and an overview
of current physical design algorithms.

1) Technology Constraints: Wire routing is especially chal-
lenging: most FCN implementations are effectively planar
and provide only limited crossing capabilities [39], [55], as
well as the requirement to provide the same area for a wire
segment compared to any other standard gate, as demonstrated
by the gate library illustrated in Fig. 2. In addition, signal
synchronization requires tight control of interconnect path
lengths across the entire layout [56].

FCN circuits are partitioned into a grid of identical tiles,
shown by the black borders surrounding each gate and in-
terconnect segment in Fig. 2. The layout footprint is therefore
measured simply by counting tiles. Reliable signal propagation
is ensured through a four-phase clocking scheme (phases 1–4),
with the proposed idea of buried electrodes in the substrate
delivering these phase signals to every tile [45]. To facilitate

(a) 2DDWave [57]. (b) USE [58]. (c) RES [59].

Fig. 5: Common clocking schemes for FCN technologies. The
four distinct clock phases, labeled 1 through 4, are represented
by white, light gray, medium gray, and dark gray, respectively,
taken from [28].

the physical design process, different clocking schemes have
been proposed, which offer tailored arrangements of regular
clock zones. The most prominent clocking schemes are illus-
trated in Fig. 5, which are 2DDWave [57] in Fig. 5a, USE [58]
in Fig. 5b, and RES [59] in Fig. 5c. Recently, 2DDWave
has established itself as the superior clocking scheme, as
information flow is restricted from left to right and top to
bottom only, facilitating physical design [13]–[15], [17], [23],
[28]. Furthermore, physical design algorithms agnostic to the
clocking scheme usually create layouts with smaller footprint
for 2DDWave compared to other clocking schemes [12], [21],
[25], [29].

Satisfying clock-phase synchronization, suppressing wire
crossings and segment counts, and shrinking the layout
footprint constitute a tightly coupled optimization problem.
Even the seemingly simpler task of minimizing area alone
is NP-complete [60]. Unlike CMOS place-and-route flows,
where an entire standard cell is the fundamental unit, FCN
physical design must first locate every individual logic gate
and only afterwards substitute it with the corresponding
multi-dot implementation drawn from a chosen library [47],
[54]. Hence, a practical FCN layout generation algorithm must
respect all technology-specific wiring and clocking constraints
while simultaneously optimizing whichever cost objectives
the designer prioritizes. Moreover, a practical physical design
approach must simultaneously balance layout quality and
computational runtime, yet prior algorithms have generally
optimized one at the expense of the other.

2) Exact Approaches: Several works [12], [29] have cast
the FCN physical design problem as a fully symbolic for-
mulation and solved it with SMT-based reasoning engines.
These methods enumerate candidate grid sizes in ascending
order and, for each size, ask the solver whether a placement
and routing that realizes the target Boolean function exists.
When more than one solution is feasible for a given area,
additional solver constraints allow secondary objectives (e.g.,
number of wire segments or number of crossings) to be
imposed. Although provably optimal, these techniques inherit
the NP-completeness of FCN physical design [60] and have
thus far been practical only for networks of roughly 40 gates
or less.

4

214

143

432

321

(a) Created by
exact [12].

32143

21432

1432

4

1

4321

3

4

1

43214

2

3

321

2

4

1

3

4

1

2

32

(b) Created by ortho [14].

43214

1

432143

321

2

4

1

3

4

1

2

32

(c) Created by ortho with
subsequent PLO [28].

Fig. 6: Layouts implementing the 2:1 multiplexer created by
three different physical design algorithms.

Example 1. One example for an optimal placement and
routing is shown in Fig. 6a, where a 2:1 multiplexer is realized
using only twelve tiles.

3) Heuristic Approaches: Since exact approaches only
scale up to around 40 gates, a range of heuristic strategies
have been proposed that trade optimality for tractability. These
methods either prioritize raw scalability, often ignoring area
overhead altogether, or seek smaller areas while relying on
strong search space restrictions.

The algorithms ortho [14] and its input-ordering extension
(IO-SDN) [16] illustrate the first class: by framing the place-
ment and routing problem as orthogonal graph drawing on a
Cartesian grid, they lay out QCA circuits with hundreds of
gates in milliseconds, but the resulting area can be an order
of magnitude larger than the optimum. Additionally, due to its
reliance on signal flow directions to be restricted from top to
bottom and left to right, only the 2DDWave clocking scheme
can be used.

Example 2. For the 2:1 multiplexer shown in Fig. 4, the
resulting layout has 42 tiles, 30 tiles more compared to the
optimum.

Another approach applies reinforcement learning to gate
placement [21], [25]. The agent receives a reward shaped by
the current layout area and gradually learns placement policies
that outperform hand-crafted heuristics, yet they still fall short
of the provably optimal layouts obtainable by exact solvers.

4) Post-Layout Optimization: To mitigate the area overhead
produced by heuristic placers, a separate post-layout opti-
mization phase can be applied [15], [17], [28]. After a first
legal placement is fixed, the optimizer first relocates selected
gates to better positions and then removes excess wiring,
thereby freeing up unused rows and columns. In practice this
optimization step recovers a substantial fraction of the area
lost during the initial heuristic design.

Example 3. For the 2:1 multiplexer created by ortho shown
in Fig. 6b, post-layout optimization is able to reduce the layout
area by 18 tiles, resulting in a layout with 24 tiles shown
in Fig. 6c. Notably, this layout is still twice as large as the
optimal one in Fig. 6a.

214

143

432

321

(a) Cartesian layout with QCA
gates from the QCA ONE gate
library [47].

1

1 1

2 2

2

3 3 3

4 4 4

(b) Hexagonal layout with
SiDB gates from the Bestagon
gate library [54].

Fig. 7: Cartesian layouts can be transformed into hexagonal
layouts using a 45° turn [19].

5) Hexagonalization: To transform any Cartesian,
2DDWave-clocked layout into a hexagonal configuration
to accommodate Y-shaped SiDB gates, an algorithm [19]
utilizing a 45° turn can be used.

Example 4. The optimal implementation in Fig. 7a of the
2:1 multiplexer using QCA gates from QCA ONE [47] is
transformed into its hexagonal representation in Fig. 7b using
SiDB gates from the Bestagon library [54] by rotating each
tile and stretching it vertically.

Therefore, 2DDWave is selected as the underlying clock-
ing scheme for the proposed algorithm, since it enables the
strongest search space restrictions, and any resulting Cartesian
layout suitable for QCA can later be mapped to a hexagonal
form for Y-shaped SiDB gates, making it technology-agnostic.

III. EFFICIENT AND SCALABLE LAYOUT DESIGN WITH
DISCRETIONARY COST OBJECTIVES

In this section, we first present the general idea and
an overview of the proposed algorithm for designing FCN
gate-level layouts in Section III-A and Section III-B, and then
describe the creation of multiple search space graphs (SSGs)
in Section III-C. Afterward, we detail the main search proce-
dure in Section III-D, and finally explain how different cost
objectives are included in Section III-E.

A. General Idea

The main idea is to frame physical design as a path-finding
problem on an SSG. Gates are placed one by one in a topolog-
ical ordering, where each placement decision generates a new
vertex that captures the current partial layout. Two vertices
are joined by an edge when the latter can be obtained from
the former by inserting exactly one additional gate. While this
incremental placement proceeds, an A∗-Search algorithm [61]
is run not only to decide which vertex to expand next based

5

3

1

2

1

1

2

1 2 1 2

32

1

2

3

2

3

4 1

3

4

4 1 2

START

1 2
...

...

1

2

3

2

3

4 1

3

4

1

2

4

A

1 2 3

B

Level 0

Level 1

Level 2

Level 9

...

Fig. 8: The search space graph created for the 2:1 multiplexer,
with two possible solutions at the bottom, taken from [23].

on the desired cost objective but also to carry out routing for
the already placed subset.

The framework is objective-agnostic, any metric (e. g., lay-
out area or number of crossings) can steer the search, and
inherently parallel: independent graphs can be spawned to
explore alternative global choices such as input pin locations
or fanout tree creation. An effort knob determines how many
graphs are explored concurrently, allowing designers to trade
off runtime against layout quality.

Example 5. Fig. 8 shows the SSG exploration for a 2:1
multiplexer. The root (level 0) is empty; level 1 contains one
vertex for every legal placement of the first primary input pin
along the top row. At each subsequent level the algorithm
expands the vertex whose cost—here equal to the current
footprint in tiles—is minimal, so the search always pursues
the most compact partial layout first.

When the last level is reached, every vertex corresponds to a
complete, functionally correct layout. Two candidates, labeled
A and B, are highlighted: both implement the multiplexer, but
B occupies fewer tiles than A. Although A is discovered first,
the algorithm backtracks within the SSG, reopens a higher-cost
vertex, and ultimately finds B. Because B has the lowest cost
at the terminal level, it is returned as the final solution.

B. Algorithm Overview

The graph-oriented layout design (gold) algorithm, as out-
lined in Algorithm 1, constructs gate-level layouts by exploring
one or more SSGs, each of whose vertices encode a partial
layout. The input network is represented purely in terms of
gates and interconnecting signals, with no gate-level placement
or routing information. A partial layout is a legal, partially
routed embedding in which exactly k of the N gates have
been placed, and all interconnecting signals between the placed
gates have been routed.

Algorithm 1: Graph-Oriented Layout Design
1 Function GraphOrientedLayoutDesign(network):
2 S ← INITIALIZESSGS(network , effortMode)
3 bestLayout ← ∅
4 while ∃ ssg ∈ S : ssg.active do
5 parallel for ssg ∈ S where ssg.active do
6 L← Expand(ssg)
7 if L ̸= ∅ and BETTER(L, bestLayout) then
8 bestLayout ← L
9 end

10 if ssg.frontier .EMPTY() then
11 ssg.active← false
12 else
13 ssg.current← ssg.frontier .POPMIN()
14 end
15 end
16 end
17 return bestLayout
18 end
19
20 Function Expand(ssg):
21 layout ← GETPARTIALLAYOUT(ssg.current)
22 if INVALID(layout)) then
23 return ∅
24 end
25 if ALLPLACED(layout) then
26 return layout
27 end
28 foreach p ∈ FEASIBLETILES(layout , ssg,numExpansions)

do
29 v ← ssg.current ∥ p
30 g ← ssg.numRemainingNodes
31 h← HEURISTIC(layout , p, ssg.costObjective)
32 f ← g + h
33 ssg.frontier .PUSH(v, f)
34 end
35 return ∅
36 end

Each vertex in an SSG is identified by an ordered tuple

v =
〈
(x0, y0), (x1, y1), . . . , (xk−1, yk−1)

〉
,

where (xi, yi) is the grid coordinate (tile) chosen for the ith

gate in a fixed topological ordering. To guide the best-first
expansion of these vertices, gold maintains a frontier queue,
which is a min-priority queue keyed by

f(v) = g(v) + h(v) .

Here, g(v) is simply the number of gates remaining to place
(i. e., g(v) = N − k), ensuring that the successful placement
of gates is preferred to minimizing other cost objectives
such as the number of wire segments. The term h(v) is a
normalized cost heuristic on the current partial layout—such
as the occupied area, number of wire segments, crossing count,
or a user-defined combination, scaled into the interval [0, 1)
to bias the expansion toward low-cost embeddings.

To achieve this, the algorithm carries out the following
steps:
1. Create alternative search spaces. To avoid the intractabil-

ity of exploring the full search space, it is partitioned into
a family S of SSGs (Line 2). Each SSG is obtained by
fixing exactly one choice along each algorithmic dimension
(primary input placement, fanout substitution strategy, and
gate ordering), thereby yielding smaller, more manageable
search spaces that collectively cover all combinations of

6

these dimensions. The number of generated search space
graphs is determined by the effort mode.

2. Maintain the best layout. The variable bestLayout is
initialized to an empty layout (Line 3) and is updated
whenever a superior complete layout is discovered.

3. Parallel search loop. While at least one SSG remains
active (Line 4), the algorithm processes all active SSGs
in parallel (Line 5) by

a) expanding each SSG’s frontier to generate new partial
layouts (Line 6);

b) checking if a newly generated complete layout is bet-
ter than the current best solution (Line 7) to replace
bestLayout (Line 8);

c) deactivating exhausted SSGs whose frontier becomes
empty (Line 10) by marking them as inactive (Line 11).

4. Expansion within one SSG. When expanding a single
SSG, the algorithm repeatedly

a) removes the vertex v with the smallest cost f(v)
(Line 13);

b) reconstructs the partial layout for v (Line 21);
c) checks if the layout is infeasible (Line 22), i. e., the

partial layout is impossible to complete due to trapped
gates or unavailable routing paths, in which case an
empty layout is returned (Line 23);

d) checks if the layout is already complete (Line 25), and,
if so, returns it (Line 26);

e) otherwise, for a predefined number of feasible tiles p for
the next gate (Line 28),
• form the successor by appending p to v: v′ = v ∥ p

(Line 29),
• compute its cost f(v′) = g(v′) + h(v′) (Line 30 to

Line 32),
• and insert v′ into the frontier (Line 33).

5. Termination. When all SSGs are inactive or a set timeout
is reached, the algorithm returns the best complete layout
obtained so far (Line 17).

Because the SSGs differ only in high-level policies (primary
input placement, fanout substitution strategy, topological gate
order), they can be explored independently yet compared fairly
based on the specified cost objective. Parallel exploration
increases the chance that at least one SSG yields a complete
layout before the timeout is reached.

C. Algorithmic Dimensions

To manage the vast search space, each SSG is restricted
by high-level algorithmic dimensions that only influence the
placement location of primary inputs and fanouts or the
topological ordering in which the gates are placed, but not
its functionality, number of gates, or choice of logic gates.

The algorithmic dimensions used to instantiate different
SSGs are as follows:

1) PI Placement Policy: Primary inputs (PIs) are seeded
along the boundaries of the layout in one of the following
ways:

• all PIs placed in the topmost row;
• all PIs placed in the leftmost column;

(a) Input network. (b) Breadth-first. (c) Depth-first. (d) Random.

Fig. 9: Three different fanout substitution strategies used to
create SSGs in gold.

• PIs may occupy either the top row or left column.
2) Fanout Substitution Strategy: As outlined in the pre-

liminaries, gates in FCN can only have one outgoing signal
and splitting of signals can only be achieved using dedicated
fanout elements. Additionally, 2DDWave-clocked layouts re-
strict each fanout to at most two outgoing signals. Conse-
quently, whenever a gate has multiple outgoing connections,
we leave the gate itself intact and substitute its outgoing
signals with a fanout tree composed of one or more fanouts.

Three strategies are used:
• insert fanouts breadth-first, minimizing tree depth;
• insert fanouts depth-first, minimizing tree width;
• randomize fanout insertion order.

Example 6. In Fig. 9, the three different fanout substitution
strategies are illustrated by means of the trivial network
in Fig. 9a, which consists of a single inverter ¬ and four
outgoing signals S1 . . . S4.

• Breadth-first (Fig. 9b). After the first fanout F1 splitting
up the outgoing signals, two more fanouts F2 and F3 are
inserted, each driving two signals. The resulting tree has
a depth of 2 and a perfectly balanced shape with a width
of 2, minimizing the longest signal path.

• Depth-first (Fig. 9c). A single fanout F1 is attached to the
inverter and drives S4 as well as a second fanout F2,
which drives S3 and the third fanout F3. Finally, the last
fanout F3 then splits up the signal to S1 and S2. This
produces a tree of depth 3 and width of 1.

• Random order (Fig. 9d). Fanouts are placed in an
arbitrary sequence; in the depicted run, the fanout tree
looks similar to the depth-first one, but the order of the
outgoing signals is different.

3) Topological Node Ordering: To route a newly placed
gate with its predecessors, they must already be present in
the layout, which is ensured by placing gates in a topological
order. Since the chosen ordering affects routing congestion and
the overall layout quality, multiple topological orderings are
generated according to four different traversal strategies:

• traverse from outputs backward to inputs (PO→PI);
• traverse from inputs forward to outputs (PI→PO);

7

(a) Input network. (b) Four topological orderings.

Fig. 10: Buffered network and different topological orderings.

Table I: SSGs per effort mode. Factorization shows the option
counts for each dimension.

EFFORT MODE TOTAL SSGS FACTORIZATION†

High-Efficiency 2 1× 1× 2× 1× 1
High-Effort 12 3× 2× 2× 1× 1
Highest-Effort 48 3× 2× 2× 4× 1
Maximum-Effort 96 3× 2× 2× 4× 2

†Counts are listed in the order: PI placement policy, fanout substitution
strategy, topological ordering, cost objective (layout area, number of wires,
number of crossings, or area-crossing product), and extra randomization.

• traverse PO→PI with randomized fanin exploration;
• traverse PI→PO with randomized fanout exploration.

Example 7. Fig. 10b illustrates four valid topological order-
ings based on the four aforementioned substitution strategies,
from top to bottom, for the buffered network in Fig. 10a.
All respect topological precedence because for each gate, all
incoming gates and primary inputs are placed to the left.

4) SSG Count by Effort Mode: To trade off runtime ef-
ficiency and result quality, the number of generated SSGs
is scaled during instantiation using the effortMode parameter
(Line 2). Table I summarizes how many SSGs are instantiated
for each effort mode using the option counts shown in the
right-most column. Each SSG is defined by one choice from
three algorithmic dimensions (PI placement policy, fanout
substitution strategy, topological ordering), and by one of sev-
eral cost objectives. For HIGH-EFFICIENCY, HIGH-EFFORT,
and HIGHEST-EFFORT, the fanout substitution strategies and
topological orderings only include the deterministic, not ran-
domized variants, while for the MAXIMUM-EFFORT mode,
the number of SSGs is double compared to HIGHEST-EFFORT
using randomization.

D. Search Procedure

This section further explains how a vertex in the SSG gets
extended, i. e., how a partial layout with k gates placed gets
transformed into a layout with k + 1 gates placed.

The outer while loop (Line 4) terminates when every SSG
has become inactive or a user-defined timeout occurs. Each

active SSG is processed by a separate worker thread (Line 5
to Line 14). The only shared resource is the global best layout.

For a given SSG, Expand() (Line 6) performs three tasks:
1) Materialize partial layout. The vertex stored in current

is replayed to obtain the corresponding partial layout
(Line 21).

2) Validate and finish. If the layout is invalid, it is dis-
carded immediately (Line 22). If all N gates are placed
(Line 25), the fully routed layout is returned.

3) Generate successors. Otherwise, up to numExpansions
feasible tiles for the next logic node are computed. Every
tile p yields a successor vertex v′ = v ∥ p together with
its key f(v′) (Line 28 to Line 33).

The successors are then added to the frontier (Line 7–
Line 13) and the partial layout with the lowest cost becomes
the new current layout to expand further.

Successor tiles depend on the type of the next node:
• PI. A tile on the chosen boundary that still sees a possible

path to either the right or bottom border.
• PO. A tile on the right or bottom border that sees a

possible path from its predecessor.
• Single-fanin gate. A tile that (i) sees a possible path from

its predecessor, and (ii) leaves at least one escape path
towards the right or bottom border.

• Dual-fanin gate. A tile that (i) sees a possible path from
each of its predecessors, and (ii) leaves at least one escape
path towards the right or bottom border.

• Dual-fanout gate. A tile that (i) sees a possible path from
its predecessor, and (ii) leaves at least two escape paths
towards the right or bottom border.

Each condition is checked using an A∗ path-finding algorithm.
When a solution is found, gold revisits vertices with a higher

cost in terms of placed gates (g(v)) to discover solutions with
a lower cost in terms of layout area, number of crossings, or
any other discretionary cost objective (h(v)), which we denote
as backtracking through the SSG.

The cost of the best globally found layout can be used
to prune other SSGs by discarding all vertices that already
have a higher cost in terms of, e. g., layout area or number
of crossings, as these costs only increase when placing more
nodes in the layout. These pruning strategies can be classified
into two rules:

1) Cost pruning. If the partial layout associated with a
vertex already has a higher desired cost (h(v) ≥ h(best)),
the partial layout is skipped and marked as not worth
expanding further.

2) Objective pruning. When the SSGs contain several cost
objectives, the cost of the best layout in terms of the
desired cost function (e. g., layout area or number of
crossings) is used to prune all SSGs independent of the
cost function used in them.

E. Cost Objectives

In addition to single optimization objectives like layout area,
number of crossings, or number of wire segments, gold also
supports composite objectives familiar from CMOS physical

8

1

2

1

2

3

2

3

4 1

3

4

4

1

2

1

2

3

2

3

4 1

3

4

4 1

2

3

1

2

1

2

3

2

3

4 1

3

4

4

24 1 1

Fig. 11: Depending on the cost objective, different expansions
are prioritized, taken from [23].

design, such as the Area-Delay Product (ADP) and Power-
Delay Product (PDP) [62].

In FCN, crossings are particularly sensitive and difficult to
fabricate, a possible cost metric to trade off the number of
crossings and the layout area is therefore the Area-Crossing
Product (ACP):

ACP = A · (|C |+ 1), (1)

where A denotes the current layout area and |C | the number
of wire crossings. Moreover, users can specify any cost
objective computable from the current partial layout. Because
this objective must be evaluated at every expansion step, its
computation time directly influences the overall scalability.

The total cost is defined as

f(v) = (N − |v|)︸ ︷︷ ︸
gates still missing

+
θ(layout(v))

K︸ ︷︷ ︸
defined cost

,

where N − |v| is the number of gates that remain to be
placed, while θ(layout(v)) represents an arbitrary cost metric,
for example the current layout area, evaluated on the partial
layout associated with vertex v. Because this user-defined
metric serves only as a secondary optimization criterion, it
is rescaled to the interval [0, 1) by dividing it by a constant
K that is strictly greater than any value θ can attain.

Example 8. In Fig. 11, the top row shows a partial layout
with three input pins and a single placed gate. Where the next
AND gate is inserted depends on the chosen cost objective:

• Area-driven placement Placing the gate to the right of
the existing one (lower-left layout) minimizes the footprint
to 5 × 3 = 15 tiles, but forces the wire from I1 to cross
two other wires, adding two crossings.

• Crossing-driven placement Placing the gate below the
existing one (lower-right layout) avoids introducing any
additional crossings, yet enlarges the footprint to 4×4 =
16 tiles.

This example illustrates the inherent trade-off: reducing
wire crossings can inflate area, and vice versa.

IV. EXPERIMENTAL EVALUATION

To evaluate the practical performance of the proposed phys-
ical design algorithm gold, we carried out a comprehensive
experimental study benchmarking it against both exact and
heuristic state-of-the-art methods. After detailing the experi-
mental setup in Section IV-A, we present the numerical results
in Section IV-B and Section IV-C. Finally, Section IV-D
presents three illustrative examples, and Section IV-E offers
a discussion of the results along with an outlook.

A. Experimental Setup

In total, 35 combinational circuits of widely varying size and
structure, ranging from 9 to 151 gates, were taken from three
public benchmark suites (Trindade16 [63], Fontes18 [64], and
IWLS93 [65]). The parameter numExpansions was set to 4
if not stated otherwise. Solution quality is assessed by three
complementary metrics:
• Total area (A) of the final gate-level layout (in tiles),
• Number of wire crossings (|C |), and
• Number of wire segments (|W |).
All experiments were executed under macOS 15.5 on an

Apple-Silicon M1 PRO (8 performance + 2 efficiency cores at
3.20GHz, 16GB unified DRAM). Each layout attempt was
capped at 60 s runtime; functional correctness of every solu-
tion was confirmed with the SAT-based equivalence checker
proposed in [66].

Table II compares gold against three state-of-the-art base-
lines:

1) exact [12]. An SMT-based algorithm that guarantees
global optimality w.r.t. area, but scales exponentially in
terms of runtime based on the number of gates.

2) ortho [14]. A fast and scalable heuristic based on orthog-
onal graph-drawing; and

3) ortho + PLO [15]. The aforementioned heuristic post-
processed with a gate relocation and wiring reduction
post-layout optimization algorithm, denoted as PLO.

The proposed algorithm gold is invoked with the
three different cost objectives, denoted as gold(X) with
X ∈ {A,C,W}.

B. Numerical Results

Table II reports the complete results for all 35 benchmarks,
where within each row the best figure is highlighted in bold.
We first summarize the 17 small circuits solvable by exact
and then discuss the 18 larger ones that can only be solved by
heuristic approaches.

a) Instances (|G| ≤ 40) solvable by exact (17/35): All
7 Trindade16 circuits and 10 of the Fontes18 circuits can be
solved optimally by exact within the one-minute timeout limit.
If multiple optimal layouts in terms of area have been found,
the one with the lowest number of crossings and wire segments
was chosen. On this small-to-medium subset
• gold(A) exactly matches the minimum area in 7 cases;
• gold(C) eliminates extra crossings in 5 and achieves the

same number of crossings in 7; and

9

Table II: Experimental evaluation of the proposed algorithm for different cost objectives.

BENCHMARK CIRCUIT [63], [64] EXACT ORTHO ORTHO + PLO GOLD(A) GOLD(C) GOLD(W)

Name |G| A |C | |W | A |C | |W | A |C | |W | A |C | |W | A |C | |W | A |C | |W |

Tr
in

da
de

16
[6

3]

2:1 MUX 9 12 1 3 42 5 20 24 2 11 12 1 3 15 0 5 15 0 2
XOR 9 18 1 7 35 2 14 20 1 8 18 1 9 21 1 11 18 1 7
XNOR 11 18 1 4 48 2 17 35 2 14 18 1 6 27 1 12 18 1 4
Half Adder 14 24 2 12 72 5 35 24 2 13 24 4 14 40 2 23 24 4 14
Full Adder 14 28 2 15 80 6 40 42 4 28 32 3 19 32 2 19 32 3 19
Parity Check 15 48 4 16 228 22 102 88 12 50 50 4 22 60 3 27 54 5 21
Parity Gen. 18 32 2 8 117 6 52 63 6 36 32 2 12 40 2 18 32 2 10

Fo
nt

es
18

[6
4]

c17 18 28 1 9 130 16 65 90 15 51 28 1 11 36 1 17 30 1 11
t 21 30 1 9 160 16 74 70 10 42 32 2 13 36 2 14 32 2 13
t_5 21 30 1 9 160 15 75 42 4 19 30 1 11 30 1 11 30 1 11
1bitAdderAOIG 26 55 2 20 216 14 88 130 15 63 65 5 36 65 3 35 65 3 35
b1_r2 26 40 5 20 221 15 105 96 9 51 56 5 30 64 3 31 64 4 29
majority 27 48 3 14 216 22 126 112 18 71 75 2 40 96 2 49 75 4 39
majority_5_r1 27 44 2 14 230 21 123 126 17 74 54 5 26 54 4 26 54 5 25
newtag 28 44 3 15 300 32 169 120 20 73 52 1 20 102 1 48 52 1 18
clpl 30 45 0 4 425 77 247 120 21 90 70 8 39 120 6 69 70 8 39
XOR5_R1 40 77 4 20 448 19 184 190 22 100 90 8 41 176 6 70 90 8 41
1bitAdderMaj 45 — 490 33 199 364 42 191 200 20 115 238 14 118 200 20 115
cm82a_5 68 — 1248 52 444 368 71 260 234 44 176 324 40 197 234 44 176
2bitAdderMaj 82 — 1674 71 484 780 81 364 374 34 184 420 33 194 374 34 184
xor5Maj 102 — 2418 113 809 1248 177 651 726 70 370 759 70 373 726 70 370
parity 150 — 5712 164 1850 2028 267 1064 504 32 246 836 25 264 504 32 246

IW
L

S9
3

[6
5]

b1 53 — 740 46 344 234 43 178 132 35 111 180 33 122 132 35 111
majority 60 — 920 76 439 288 59 213 264 46 187 360 43 227 273 44 176
con1 66 — 1122 108 537 464 105 383 264 48 202 396 43 262 264 48 202
cm138a 71 — 1485 63 547 315 54 203 306 72 235 374 48 239 323 53 208
cm82a 74 — 1430 56 534 522 72 330 336 38 189 336 38 189 336 38 189
cm42a 79 — 1739 61 683 510 93 374 704 142 513 704 142 513 704 142 513
cm152a 86 — 2112 152 971 1232 269 896 684 189 589 910 91 549 756 115 504
decod 107 — 3162 119 1358 968 227 799 2080 445 1725 2112 445 1738 2080 445 1725
cm151a 122 — 3626 234 1594 1881 296 1011 782 98 510 782 88 507 782 88 507
i1 125 — 5264 560 2621 1836 449 1496 1287 325 1203 1287 325 1203 1287 325 1203
cm85a 132 — 4455 250 1872 1470 262 1011 528 74 354 598 74 362 528 74 354
tcon 144 — 5985 339 2498 1488 390 1404 1100 197 973 1140 183 964 1140 183 964
cmb 151 — 6272 516 2863 2537 596 2047 2187 285 1502 2214 285 1503 2187 285 1502

|G| represents the total number of gates in the logic network, including primary inputs, primary outputs, and fanout buffers; A, |C |, and |W | denote the
resulting layout area, number of crossings, and number of wire segments, respectively. The timeout for each layout generation was set to 1min.

Table III: Summary of gold unique wins and average improve-
ments on the 18 large benchmarks (|G| > 40).

OBJECTIVE UNIQUE WINS AVERAGE IMPROVEMENT

(out of 18) vs. ortho vs. ortho + PLO

gold(A) 16 73.07% 25.99%
gold(C) 16 19.10% 37.82%
gold(W) 15 54.47% 25.96%

• gold(W) achieves the same number of wire segments in
3 relative to those area-optimal layouts.

Due to the layout area and number of wire segments being
highly intertwined metrics, as well as gold relying on heuristic
path-finding algorithms for routing, the slight superiority of
exact was therefore expected. For other cost metrics, like the
number of crossings, gold is able to find superior solutions
compared to exact, as the layout with the least amount of
crossings is not necessarily the one with the lowest area
footprint, as eliminating a crossing might lead to routing
detours.

b) Instances (|G| > 40) not solvable by exact (18/35):
On the remaining 18 circuits, the advantage shifts clearly to
gold, even against the strongest heuristic baseline ortho with
PLO. Table III summarizes the average and peak improve-
ments of gold against the two heuristic baselines. Notably,
gold(A) achieves 73.07% average area reduction compared

Table IV: Peak improvement for the parity function.

OBJECTIVE PEAK GAIN (VS. ortho) PEAK GAIN (VS. ortho + PLO)

gold(A) 91.18% 75.15%
gold(C) 84.76% 90.64%
gold(W) 86.70% 76.88%

to ortho and 25.99% compared to ortho + PLO. In terms of
the number of crossings, gold(C) achieves 19.10% average
crossing reduction compared to ortho and 37.82% compared
to ortho + PLO. For the number of wire segments, gold(W)
achieves 54.47% wiring reduction compared to ortho and
25.96% compared to ortho + PLO. The highest improve-
ment, as summarized in Table IV, was found for the second
largest benchmark circuit, parity: 91.18% (75.15%) area
reduction, 84.76% (90.64%) crossing reduction, and 86.70%
(76.88%) wiring reduction compared to ortho (+ PLO).

c) Runtime vs. Gate Count: For all 35 benchmarks the
first legal layout is found in MAXIMUM-EFFORT mode within
1.5 s, rising from ≈0.02 s at 9 gates to ≈1.43 s at 151 gates, as
shown in Fig. 12. The dashed quadratic fit merely captures this
empirical range; it should not be extrapolated to substantially
larger networks, where the number of partial placements in
every SSG grows exponentially and backtracking becomes
infeasible.

10

20 40 60 80 100 120 140
Number of gates

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
to

 fi
rs

t v
al

id
 la

yo
ut

 (s
)

Runtime vs. gate count (Maximum-Effort mode)
First valid layout
Quadratic trend

Fig. 12: Runtime to determine first valid layout in MAXIMUM-
EFFORT mode.

C. Parameter Sweeps

This section investigates how key algorithm parameters
influence layout quality and runtime. We systematically sweep
settings such as the effort mode, expansion width, and thread-
ing configuration. The goal is to guide users toward con-
figurations that best match their design goals—whether fast
legal solutions or highly compact layouts are required—under
various resource constraints.

1) Effort-Mode Runtime/Quality Trade-off: Table V con-
trasts the four effort modes. Two observations suffice:
• Instant first solutions. The lightest HIGH-EFFICIENCY

setting (2 SSGs) returns a legal layout in < 0.1 s for almost
all benchmark circuits; ramping up to MAXIMUM-EFFORT
still keeps the runtime below or close to 1 s.

• Higher effort modes lead to better solutions. Moving from
HIGH-EFFICIENCY to MAXIMUM-EFFORT (2 → 96 SSGs)
drastically cuts the final layout area when setting the timeout
limit to 100 s.
Therefore, a general recommendation for the designer is

to use HIGH-EFFICIENCY (or MAXIMUM-EFFORT with a
sub-second timeout) when a legal layout is needed almost
immediately. When layout compactness matters more than
turnaround, HIGH- to MAXIMUM-EFFORT should be selected
and a longer timeout allowed.

2) Impact of numExpansions: The parameter numExpan-
sions, which defines how many candidate tiles are explored at
each expansion, directly trades runtime against layout quality
and is evaluated in Table VI. Choosing a small value (1-2)
• keeps the time to find the first solution minimal and lets the

search backtrack almost the entire SSG within a generous
timeout, which works well for small or medium networks,
but

• can lead to no valid solution being found at all, as for
xor5Maj with numExpansions set to 1.
Raising numExpansions beyond 6 rarely shrinks the area

further, yet it inflates runtime substantially. In practice the
default is set to 4 in the algorithm with the recommendation
to stay in the range 2-6 and to increase the timeout rather than
the expansion width when additional quality is needed.

214

143

432

321

(a) Layout with
12 tiles of area,
1 crossing, and
3 wire segments.

3

214

143

432

2

3

1

21

(b) Layout with
15 tiles of area,
0 crossings, and
5 wire segments.

3

214

143

432

2

3

1

21

(c) Layout with
15 tiles of area,
0 crossings, and
2 wire segments.

Fig. 13: Three layouts for the 2:1 MUX function based on the
three different cost objectives area (A), number of crossings
(|C |), and number of wire segments (|W |).

3) Single- vs. Multithreaded Performance: Multithreading
with 10 cores leads to consistent performance improvements
across all benchmarks, with speed-ups ranging from ×1.50
to ×5.14. The average speed-up is ≈ ×3.08, with larger
and more complex circuits (e.g., 2bitAdderMaj, parity,
xor5Maj) showing the greatest benefit. These results confirm
that multithreading significantly accelerates solution discovery,
especially for larger search spaces, where creating each partial
layout requires more placement steps.

D. Illustrative Examples

The following three case studies shed light on how gold
behaves in practice. The first example in Section IV-D1
demonstrates how a simple switch of the cost objective leads
to qualitatively different layouts for the same function. The
second example in Section IV-D2 opens the algorithm’s black
box and follows its search trajectory: an initial solution is
generated almost instantaneously, after which the engine back-
tracks through the SSG, revisits earlier branching points, and
incrementally discovers ever more compact implementations.
In the last case study in Section IV-D3 layouts generated by
ortho and gold for the parity function are compared to
showcase how the proposed algorithm reduces area.

1) Different Cost Objectives: The first case study shows
how the choice of the cost objective steers the engine toward
different physical designs.

Example 9. To illustrate the practical impact of switching cost
objectives, we consider a simple 1-bit multiplexer example and
create three different layouts with gold using the cost functions
A (layout area), |C| (number of crossings), and |W | (number
of wire segments). The resulting layouts are depicted in Fig. 13
and their metrics are summarized below.
13a Area-optimal: A = 12, |C| = 1, |W | = 3. The layout

in Fig. 13a is identical to the solution found by exact and
therefore minimal in area.

13b Crossing-free: A = 15, |C| = 0, |W | = 5. Eliminating
the single crossing of Fig. 13a requires an additional row
in Fig. 13b. This solution is invisible to exact, which is
restricted to layouts with minimal area.

11

Table V: First legal layout vs. best layout after 100 s for four effort modes. Metrics: area in tiles (A) and discovery time in
seconds (t) with t100 showing the time (≤ 100 s) at which the best-area layout first appeared.

BENCHMARK [64] HIGH-EFFICIENCY HIGH-EFFORT HIGHEST-EFFORT MAXIMUM-EFFORT

Name |G| Afirst tfirst A100 t100 Afirst tfirst A100 t100 Afirst tfirst A100 t100 Afirst tfirst A100 t100

c17 18 48 <0.01 32 7.88 48 0.01 28 31.84 48 0.02 32 4.44 48 0.05 28 0.38
t 21 80 <0.01 42 15.23 60 0.01 30 54.33 60 0.03 42 0.04 36 0.06 32 0.08
t_5 21 63 <0.01 30 7.71 90 0.01 30 10.45 60 0.03 30 1.86 42 0.09 30 2.50
1bitAdderAOIG 26 90 <0.01 70 81.35 90 0.01 72 3.03 90 0.03 72 9.36 90 0.06 65 5.47
b1_r2 26 78 <0.01 56 21.83 90 0.01 54 23.84 90 0.05 54 84.71 80 0.09 56 22.83
majority 27 144 <0.01 120 68.61 144 0.01 117 71.77 144 0.04 126 0.05 90 0.08 70 80.53
majority_5_r1 27 98 <0.01 72 96.40 95 0.01 60 2.08 95 0.04 60 8.05 95 0.13 50 88.70
newtag 28 80 <0.01 60 4.34 80 0.01 60 12.61 80 0.06 60 34.20 80 0.06 52 54.93
clpl 30 165 0.01 128 0.87 90 0.01 90 0.01 90 0.07 90 0.07 90 0.12 70 21.96
XOR5_R1 40 140 0.01 133 0.04 135 0.02 90 2.23 135 0.09 90 6.70 248 0.16 90 0.66
1bitAdderMaj 45 286 0.01 231 1.47 216 0.05 200 1.74 238 0.12 200 4.20 336 0.19 200 10.14
cm82a_5 68 276 0.33 276 0.33 260 0.03 234 0.32 260 0.18 234 0.97 260 0.30 234 2.58
2bitAdderMaj 82 399 0.02 399 0.02 630 0.07 399 0.09 630 0.27 399 0.23 630 0.45 374 31.48
xor5Maj 102 968 0.06 968 0.06 968 0.13 924 0.025 968 0.35 726 35.59 968 0.66 726 40.49
parity 150 846 0.06 549 0.18 1917 0.22 549 0.45 1917 0.60 504 1.42 1917 1.05 504 2.82

Table VI: First legal layout vs. best layout after 100 s for different numExpansions values. Metrics: area in tiles (A) and
discovery time in seconds (t) with t100 showing the time (≤ 100 s) at which the best-area layout first appeared.

BENCHMARK [64] numExpansions=1 numExpansions=2 numExpansions=4 numExpansions=6 numExpansions=10

Name |G| Afirst tfirst A100 t100 Afirst tfirst A100 t100 Afirst tfirst A100 t100 Afirst tfirst A100 t100 Afirst tfirst A100 t100

c17 18 42 0.06 30 1.83 48 0.10 28 0.23 48 0.05 28 0.38 48 0.13 28 0.65 48 0.10 28 0.42
t 21 36 0.08 30 0.564 42 0.10 30 4.63 36 0.06 32 0.08 36 0.09 32 0.06 36 0.12 32 0.12
t_5 21 42 0.08 30 0.05 42 0.10 30 0.10 42 0.09 30 2.50 42 0.11 30 14.70 42 0.10 30 21.03
1bitAdderAOIG 26 90 0.05 75 0.18 90 0.06 60 64.76 90 0.06 65 5.47 90 0.11 65 10.83 90 0.09 65 11.48
b1_r2 26 72 0.11 66 0.22 80 0.13 42 20.29 80 0.09 56 22.83 80 0.14 56 39.81 80 0.15 60 0.18
majority 27 90 0.16 66 2.43 90 0.12 60 14.46 90 0.08 70 80.53 90 0.10 75 13.21 90 0.14 75 17.77
majority_5_r1 27 102 0.12 60 2.22 102 0.11 44 7.31 95 0.13 50 88.70 95 0.11 54 0.28 95 0.16 54 10.34
newtag 28 80 0.13 52 35.70 80 0.18 52 0.21 80 0.06 52 54.93 80 0.17 60 7.65 80 0.14 60 12.48
clpl 30 168 0.15 77 76.68 90 0.17 70 11.32 90 0.12 70 21.96 90 0.15 70 22.70 121 0.16 70 24.01
XOR5_R1 40 220 0.17 90 15.38 248 0.16 90 0.34 248 0.16 90 0.66 248 0.18 90 0.90 248 0.21 90 1.05
1bitAdderMaj 45 299 0.12 299 0.12 312 0.19 200 1.13 336 0.19 200 10.14 336 0.23 200 21.23 336 0.23 200 29.88
cm82a_5 68 261 0.21 216 6.24 260 0.28 234 0.97 260 0.30 234 2.58 260 0.39 234 3.31 260 0.39 234 3.55
2bitAdderMaj 82 851 0.63 437 9.51 630 0.43 432 0.53 630 0.45 374 31.48 630 0.49 374 64.42 630 0.40 378 50.15
xor5Maj 102 timeout limit reached 989 2.11 900 30.57 968 0.66 726 40.49 968 0.65 726 64.84 968 0.70 726 76.66
parity 150 2144 1.21 603 69.16 1917 1.28 531 2.24 1917 1.05 504 2.82 1917 1.22 504 5.61 1917 1.08 504 15.59

Table VII: Impact of multithreading. Metrics: area in tiles (A)
and discovery time in seconds (t) with tsingle showing the time
(≤ 100 s) at which the best-area layout first appeared with
single-threading and tmulti showing the time it took to find the
same solution with multithreading using 10 cores. Speed-up
is defined as tsingle

tmulti .

Benchmark Name [64] |G| A tsingle tmulti Speed-up

c17 18 28 0.79 0.38 ×2.08
t 21 32 0.12 0.08 ×1.50
t_5 21 30 4.93 2.50 ×1.97
1bitAdderAOIG 45 65 13.09 5.47 ×2.39
b1_r2 26 56 74.80 22.83 ×3.28
majority 27 75 20.60 5.81 ×3.55
majority_5_r1 27 54 0.47 0.20 ×2.35
newtag 28 60 14.25 5.62 ×2.54
clpl 30 70 74.56 21.96 ×3.40
XOR5_R1 40 90 1.75 0.66 ×2.65
1bitAdderMaj 45 200 35.93 10.14 ×3.54
cm82a_5 68 234 9.24 2.58 ×3.58
2bitAdderMaj 82 378 59.01 11.47 ×5.14
xor5Maj 102 759 6.82 1.74 ×3.92
parity 150 504 13.09 2.82 ×4.64

13c Wire-minimal: A = 15, |C| = 0, |W | = 2. By relocating
one primary input to the fourth row in Fig. 13c, the
routing is shortened by two wire segments, achieving the

best wiring metric, while preserving zero crossings and
the same layout area as in Fig. 13b.

This example highlights two key properties of gold. First,
the engine can reproduce or is very close to the area optimum.
Second, by relaxing that single objective it explores alterna-
tive solutions, discovering layouts that significantly improve
crossings or number of wire segments, which cannot be found
by any other algorithm. Well-defined cost objectives therefore
matter: although the layouts in Fig. 13b and Fig. 13c are
both crossing-free, using the objective |W | reveals a superior
implementation.

2) Backtracking through SSGs: The second case study
shows how the layouts are refined over time by backtracking
through the SSGs.

Example 10. Fig. 14 records the sequence in which gold(A)
finds valid layouts for the newtag benchmark. The search first
yields a layout with a 16× 5 arrangement of tiles, illustrated
in Fig. 14a. Whenever the current node in the SSG becomes
a dead end or whenever a promising alternative is detected
further up the tree, the algorithm backtracks, restores the
corresponding partial layout, and explores a different gate
placement, as also seen in Fig. 8.

Each detour uncovers a layout that is strictly smaller than
the best one known so far: from 80 tiles (Fig. 14a) gold

12

4321

3214

232143

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

3

4

4

1

2

3

3

4

1

2

2

3

1

1

1

2

4

4

4

1

3

3

3

4

2

2

2

3

1

1

2

4

4

1

3

4

2

3

1

2

4

1

(a) 16× 5 = 80, 0 s 62ms.
2143

1432

4321

1

4

4

3

3

2

2

1

1

4

2

32143

1

2

4

1

3

4

2

3

1

2

4

1

3

4

4

1

2

3

3

4

1

2

2

3

1

1

2

43

2

3

2

1

2

4

1

3

4

2

3

4

1

2

3

4

1

2

3

4

1

(b) 13× 6 = 78, 0 s 64ms.

4321

3214

2143

4

1

3

4

2

32

2

1

1

4

4

3

1

21

1

4

4

3

3

2

4

14

4

3

3

2

2

1

3

3

2

3

4

2

1

2

3

1

4

21

21

2

3

4

1

2

3

2 143

43

(c) 7× 10 = 70, 0 s 66ms.

4321

321432143

21432143214

4

1

3

4

2

3

1

2

4

1

3

3

4

2

2

3

1

1

2

4

4

1

3

3

3

4

2

2

2

3

1

1

2

4

4

1

3

4

2

3

1

2

4

1

(d) 17× 4 = 68, 0 s 212ms.

3214

232143

143214321

3

4

2

3

1

2

4

4

1

3

3

4

2

2

3

1

1

1

2

4

4

4

1

3

3

3

4

2

2

2

3

1

1

2

4

4

1

3

4

2

3

1

2

4

1

(e) 16× 4 = 64, 0 s 708ms.

2143

2

1

1

4

32143

4321432

2

3

1

1

2

4

4

1

3

3

4

2

2

3

1

1

1

2

4

4

4

1

3

3

3

4

2

2

2

3

143

4

2

3

1

2

4

1

(f) 15× 4 = 60, 6 s 818ms.

1432

4321

3

2

1

4321

3214

2143

1

4

3214

2

2

1

1

4

4

4

1

1

3

3

4

4

2

3

3

2

2

3

3

3

4

4

1

2

21

(g)
4 × 14 =
56,
54 s 794ms.

4321

3

2

1

4321

3214

2143

1

4

3214

2

2

1

1

4

4

4

1

1

3

3

4

4

2

3

3

2

2

3

3

3

4

4

1

2

21

(h)
4 × 13 =
52,
54 s 928ms.

214

1432

2

1

4321

1

4

2

3214

4

3

143

3

2

4

321

1

4

214

1

21

3

43

3

4

2

2

3

321

(i)
5 × 10 = 50,
118 s 942ms.

3

2

1

4321

3214

2143

1

4

3214

2

2

1

1

4

4

4

1

1

3

3

4

4

2

3

3

2

2

3

3

3

4

4

1

2

21

(j)
4 × 12 =
48,
311 s 532ms.

14321

43214

32143

21432

14

43214

3214

21

3

4

1

3

3

4

2

2

3

1

21

(k)
5 × 9 = 45,
646 s 226ms.

Fig. 14: Progressive improvement of the layout for the
newtag circuit: the first solution (a) is produced in a few
milliseconds; subsequent layouts (b–k) are uncovered by back-
tracking through the SSGs and exploring alternative partial
placements, ultimately reducing the area from 80 to 45 tiles.

improves to 78, 70, 68, 64, 60, 56, 52, 50, 48, and finally 45
tiles (Fig. 14k).

In practice, the first complete layout typically appears within
a few milliseconds, providing an early estimate of the layout
area. The remaining runtime is spent on guided exploration
to determine even smaller layouts.

3) Layout Comparison: Fig. 15 underlines the key differ-
ence between the two engines: for the benchmark function
parity, ortho produces a large, sparse layout because each
additional gate tends to introduce a new row or column, while
gold keeps the physical placement close to the netlist structure,
packing gates tightly and saving a substantial amount of area.

E. Discussion & Outlook

The experimental results show that gold produces near-
optimal layouts for small and medium circuits, delivers signifi-

14321432143214321432143214321432143214321432143

43214321432143214321432143214321432143214321432

32143214321432143214321432143214321432143214321

21432143214321432143214321432143214321432143214

14321432143214321432143214321432143214321432143

43214321432143214321432143214321432143214321432

32143214321432143214321432143214321432143214321

21432143214321432143214321432143214321432143214

14321432143214321432143214321432143214321432143

43214321432143214321432143214321432143214321432

32143214321432143214321432143214321432143214321

21432143214321432143214321432143214321432143214

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

1432143214321432143214321432143214321432143214

2

3

4321432143214321432143214321432143214321432143

1

2

3214321432143214321432143214321432143214321432

4

1

2143214321432143214321432143214321432143214321

3

4

143214321432

2

1432143214321

1

4321432143214

4

3214321432143

3

2143214321432

2

1432143214321

1

4321432143214

4

3214321432143

3

2143214321432

2

1432143214321

1

4321432143214

4

3214321432143

1

3

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

2

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

1

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

4

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

3

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

2

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

1

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

4

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

3

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

2

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

1

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

4

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

1

2

4

1

3

4

2

3

4

1

3

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

2

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

1

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

4

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

3

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

2

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

1

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

4

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

3

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

2

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

4

1

2

3

4

1

2

1

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

4

1

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

3

4

1

2

3

4

1

4

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

3

4

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

2

3

4

1

2

3

4

3

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

2

3

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

1

2

3

4

1

2

3

2

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

3

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

4

1

2

3

4

1

2

1

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

1

2

4

2

4

1

3

3

4

2

2

3

1

1

2

4

4

1

3

3

4

2

2

3

1

1

2

4

4

1

3

3

4

2

2

3

1

2

3

4

1

2

3

4

1

4

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

2

3

4

1

2

3

4

3

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

1

2

3

4

1

2

3

2

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

3

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

4

1

2

3

4

1

2

1

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

1

4

3

2

4

3

2

1

3

2

1

4

2

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

1

4

1

4

3

4

3

2

3

2

1

2

3

4

1

2

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

1

2

3

4

1

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

3

1

4

2

4

3

1

3

2

4

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

2

3

4

2

1

1

2

3

4

4

1

2

3

3

4

1

2

2

3

4

1

1

2

3

4

4

1

2

3

3

4

1

2

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

2

3

4

2

1

3

1

4

3

1

2

2

4

1

1

3

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

4

1

1

3

4

4

2

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

3

4

4

2

3

3

1

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

2

3

3

1

2

2

4

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

1

2

2

4

1

1

3

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

1

2

4

4

1

3

3

4

2

2

3

1

4

3

4

3

2

3

2

1

2

1

4

3

2

3

2

1

2

1

4

1

4

3

2

1

2

1

4

1

4

3

4

3

4

1

3

4

2

3

4

1

2

3

4

1

3

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

2

3

4

1

2

3

3

4

1

2

2

3

4

2

3

4

2

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

1

2

3

4

1

2

2

3

4

1

1

2

3

4

3

3

2

2

1

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

3

4

2

3

1

2

4

1432

1

2

3

1

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

4

1

2

3

4

1

1

2

3

4

4

1

2

3

2

2

1

1

4

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

2

3

1

2

4

1

3

4321

4

1

2

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

3

4

1

2

3

4

4

1

2

3

3

4

1

2

1

1

4

4

3

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

1

2

4

3

4

1

3

2

3

4

2

1

2

3

1

4

1

2

4

3

4

1

3

1

2

3

4

2

3

1

2

4

1

3

4

2

3214

3

4

1

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

2

3

4

1

2

3

3

4

1

2

2

3

4

2

4

1

1

3

4

4

2

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

4

1

43

2

3

4

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

4

3

1

2

3

4

1

2

3

2

2

3

4

1

2

1

1

2

3

1

3

4

432143214321

3

4

32

1

2

3

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

2

3

1

1

2

3

4

4

1

2

3

3

4

1

2

2

3

4

1

1

2

3

4

4

1

2

3

3

4

1

2

2

3

4

1

1

2

3

4

4

1

2

2

3

21

4

1

2

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

3

4

1

2

3

4

1

4

1

2

3

4

3

4

1

4

1

2

21

1

2

4

4

1

2

3

3

4

1

2

2

3

4

1

1

2

3

4

4

1

2

3

3

4

1

2

2

3

4

1

1

2

3

4

4

1

2

3

3

4

1

2

3

4

1

2

4

1

2

3

4

1

1

2

3

4

14

3

4

1

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

3

4

1

2

3

2

3

4

1

2

1

2

3

4

1

4

1

2

3

4

2

3

4

1

2

3

4

3

4

1

2

3

3

2

3

4

(a) ortho (5712 tiles).
14

43

32

21

14

43

32

21

14

43

32

2

3

21

2

14

1

43

32

21

14

21432143

14321432

43214321

32143214

21432143

14321432

43214321

321432143

214321432

143214321

432143214

321432143

214321432

143214321

432143214

321432143

21

14

43

32

21

14

43

32

1

21

4

4

1

3

4

3

3

4

2

3

2

2

3

1

2

4

1

2

4

1

3

1

3

4

1

1

2

4

1

3

4

1

3

4

2

4

2

3

4

4

1

3

4

2

2

3

1

1

2

2

3

4

2

3

3

3

4

1

4

2

3

1

2

2

3

4

3

1

2

4

1

1

1

2

2

4

1

3

4

4

4

1

1

2

3

1

2

2

2

3

4

3

1

2

4

1

1

2

3

2

4

1

3

4

4

4

1

1

3

4

2

3

3

3

4

4

4

1

4

1

1

2

3

3

4

3

4

1

2

2

3

2

3

3

4

1

2

1

2

1

4

2

3

2

2

3

1

3

41

4

2

3

1

1

2

4

2

34

3

1

2

3

4

3

4

4

1

2

3

3

4

1

2

2

3

4

3

1

2

3

2

4

1

2

3

2

2

3

3

4

1

2

2

3

4

1

1

2

3

2

4

1

2

1

3

4

1

2

3

3

3

4

3

4

4

1

4

1

3

1

2

2

2

3

2

3

4

3

4

2

1

1

2

1

2

2

3

1

4

1

4

1

1

2

4

4

1

2

2

2

3

2

2

3

3

4

1

1

2

1

1

2

3

4

4

1

4

4

1

1

2

4

3

4

3

3

4

4

1

3

4

1

4

1

1

2

1

1

2

2

3

3

4

4

1

4

4

1

2

2

3

3

4

3

3

4

32

(b) gold (504 tiles).

Fig. 15: Layouts generated for the parity circuit. The
heuristic ortho adds an extra row or column for almost every
gate, inflating the footprint, whereas the proposed gold engine
places gates in a pattern that mirrors the logical network,
sharing rows and columns whenever possible and thereby
cutting the area by more than an order of magnitude.

cant gains in area, crossings, and wiring on larger designs com-
pared to the best heuristic, and completes each run in under a
minute, making it a compelling engine for highly optimized,
large-scale standard-cell design. Future work will explore a
hierarchical flow in which gold not only designs individual
layouts but also orchestrates the placement of sub-layouts
within a top-level network. Additional user-visible parameters,
e. g., fixed positions or explicit ordering of primary inputs and
outputs, could further ease the embedding of FCN blocks into
larger systems whose I/O locations are predetermined.

V. CONCLUSION

Recent progress in device fabrication, simulation, and soft-
ware tools has propelled Field-coupled Nanocomputing (FCN)
toward practical, post-CMOS applications, but only if the
physical design stage can keep pace.

13

In this paper, we introduced the first FCN layout engine
that combines graduated effort modes with discretionary cost
objectives. Designers can trade runtime for solution quality on
demand and steer the search with any weighted cost objective,
thereby embedding technology-specific knowledge, such as
simulation data or fabrication limits, directly into the layout
generation step.

An open-source implementation, integrated into the Mu-
nich Nanotech Toolkit (MNT), scales to circuits beyond the
reach of state-of-the-art exact solvers. On those benchmarks
it reduces layout area by an average of 73.07%, number
of crossings by 19.10%, and number of wire segments by
54.47% relative to a state-of-the-art heuristic baseline. Even
after applying post-layout optimization to the layouts gener-
ated by the heuristic, our approach still achieves average gains
of 25.99% in area, 37.82% in crossings, and 25.96% in wire
segments.

These results establish physical design via parallelized
multi-objective search space exploration as a cornerstone for
future FCN physical design flows and open the door to
versatile layout generation using highly optimized, large-scale
standard-cell design.

REFERENCES

[1] N. G. Anderson and S. Bhanja, Eds., Field-Coupled Nanocomputing -
Paradigms, Progress, and Perspectives. Springer, 2014.

[2] J. Pitters et al., “Atomically Precise Manufacturing of Silicon Electron-
ics,” ACS Nano, 2024.

[3] R. Achal et al., “Lithography for robust and editable atomic-scale silicon
devices and memories,” Nat. Commun., vol. 9, no. 1, 2018.

[4] J. Drewniok et al., “QuickSim: Efficient and Accurate Physical Simula-
tion of Silicon Dangling Bond Logic,” in IEEE-NANO, 2023.

[5] S. S. H. Ng et al., “SiQAD: A Design and Simulation Tool for Atomic
Silicon Quantum Dot Circuits,” IEEE TNANO, vol. 19, pp. 137–146,
2020.

[6] J. Drewniok et al., “Minimal Design of SiDB Gates: An Optimal Basis
for Circuits Based on Silicon Dangling Bonds,” in NANOARCH, 2023.

[7] R. Lupoiu et al., “Automated Atomic Silicon Quantum Dot Circuit
Design via Deep Reinforcement Learning,” ArXiv, vol. abs/2204.06288,
2022.

[8] J. Drewniok et al., “The Need for Speed: Efficient Exact Simulation of
Silicon Dangling Bond Logic,” in ASP-DAC, 2024, pp. 576–581.

[9] Y. Ardesi et al., “SCERPA: A Self-Consistent Algorithm for the
Evaluation of the Information Propagation in Molecular Field-Coupled
Nanocomputing,” TCAD, vol. 39, no. 10, pp. 2749–2760, 2020.

[10] M. Walter et al., “Reducing the Complexity of Operational Domain
Computation in Silicon Dangling Bond Logic,” in NANOARCH, 2023.

[11] J. Drewniok et al., “Temperature Behavior of Silicon Dangling Bond
Logic,” in IEEE NANO, 2023, pp. 925–930.

[12] M. Walter et al., “An Exact Method for Design Exploration of Quantum-
dot Cellular Automata,” in DATE, 2018, pp. 503–508.

[13] S. Hofmann et al., “A* is Born: Efficient and Scalable Physical Design
for Field-coupled Nanocomputing,” in IEEE-NANO, 2024, pp. 80–85.

[14] M. Walter et al., “Scalable Design for Field-Coupled Nanocomputing
Circuits,” in ASP-DAC, 2019, pp. 197–202.

[15] S. Hofmann et al., “Post-Layout Optimization for Field-coupled Nan-
otechnologies,” in NANOARCH, 2023.

[16] M. Walter et al., “Versatile Signal Distribution Networks for Scalable
Placement and Routing of Field-coupled Nanocomputing Technologies,”
in ISVLSI, 2023.

[17] S. Hofmann et al., “Late Breaking Results: Wiring Reduction for Field-
coupled Nanotechnologies,” in DAC, 2024.

[18] Y. Li et al., “Field-Coupled Nanocomputing Placement and Routing with
Genetic and A* Algorithms,” IEEE TCAS-I, vol. 69, no. 11, pp. 4619 –
4631, 2022.

[19] S. Hofmann et al., “Scalable Physical Design for Silicon Dangling Bond
Logic: How a 45° Turn Prevents the Reinvention of the Wheel,” in IEEE-
NANO, 2023, pp. 872–877.

[20] G. Li et al., “A QCA Placement and Routing Algorithm Based on the
SA Algorithm,” Int. J. Electron, 2023.

[21] S. Hofmann et al., “Late Breaking Results From Hybrid Design Au-
tomation for Field-coupled Nanotechnologies,” in DAC, 2023.

[22] B. Zhang et al., “Quantum-dot Cellular Automata Placement and Rout-
ing with Hierarchical Algorithm,” Nano Commun. Netw., vol. 39, p.
100495, 2024.

[23] S. Hofmann et al., “Physical Design for Field-coupled Nanocomputing
with Discretionary Cost Objectives,” in LASCAS, 2025.

[24] F. Peng et al., “Spars: A Full Flow Quantum-Dot Cellular Automata
Circuit Design Tool,” TCAS-II, vol. 68, no. 4, pp. 1233–1237, 2021.

[25] S. Hofmann et al., “Thinking Outside the Clock: Physical Design for
Field-coupled Nanocomputing with Deep Reinforcement Learning,” in
ISQED, 2024.

[26] R. E. Formigoni et al., “A Survey on Placement and Routing for Field-
Coupled Nanocomputing,” JICS, vol. 16, pp. 1–9, 2021.

[27] M. Walter and R. Wille, “Efficient Multi-Path Signal Routing for Field-
coupled Nanotechnologies,” in NANOARCH, 2022.

[28] S. Hofmann et al., “Efficient and Scalable Post-Layout Optimization for
Field-coupled Nanotechnologies,” TCAD, 2025.

[29] M. Walter et al., “One-pass Synthesis for Field-coupled Nanocomputing
Technologies,” in ASP-DAC, 2021, pp. 574–580.

[30] K. Walus et al., “QCADesigner: A Rapid Design and Simulation Tool
for Quantum-Dot Cellular Automata,” TNANO, vol. 3, no. 1, pp. 26–31,
2004.

[31] F. Riente et al., “MagCAD: Tool for the Design of 3-D Magnetic
Circuits,” JXCDC, vol. 3, pp. 65–73, 2017.

[32] R. E. Formigoni et al., “Ropper: A Placement and Routing Framework
for Field-Coupled Nanotechnologies,” in SBCCI. ACM, 2019.

[33] F. Riente et al., “ToPoliNano: A CAD Tool for Nano Magnetic Logic,”
TCAD, vol. 36, no. 7, pp. 1061–1074, 2017.

[34] M. Walter et al., “fiction: An Open Source Framework for the Design
of Field-coupled Nanocomputing Circuits,” 2019, arXiv:1905.02477.

[35] S. Hofmann et al., “Late Breaking Results: Physical Co-Design for
Field-coupled Nanocomputing,” in DATE, 2025.

[36] Y. Li et al., “iFCN: Automated Design Platform for Molecular FCN
Circuits,” https://github.com/li-yangshuai/iFCN, 2025.

[37] J. Drewniok et al., “Unifying Figures of Merit: A Versatile Cost Function
for Silicon Dangling Bond Logic,” in IEEE-NANO, 2024, pp. 91–96.

[38] F. S. Torres et al., “Evaluating the Impact of Interconnections in
Quantum-Dot Cellular Automata,” in DSD, 2018, pp. 649–656.

[39] A. Chaudhary et al., “Fabricatable Interconnect and Molecular QCA
Circuits,” TCAD, vol. 26, no. 11, pp. 1978–1991, 2007.

[40] F. Kashfi et al., “Multi-Objective Optimization Techniques for VLSI
Circuits,” in ISQED, 2011.

[41] R. Martins et al., “Multi-objective optimization of analog integrated
circuit placement hierarchy in absolute coordinates,” Expert Systems with
Applications, vol. 42, no. 23, pp. 9137–9151, 2015.

[42] M. Walter et al., “The Munich Nanotech Toolkit (MNT),” in IEEE-
NANO, 2024.

[43] S. Hofmann et al., “MNT Bench: Benchmarking Software and Layout
Libraries for Field-coupled Nanocomputing,” in DATE, 2024.

[44] C. Lent et al., “Quantum Cellular Automata: The Physics of Computing
with Arrays of Quantum Dot Molecules,” in PhysComp, 1994, pp. 5–13.

[45] K. Hennessy and C. S. Lent, “Clocking of Molecular Quantum-dot
Cellular Automata,” J. Vac. Sci. Technol. B, vol. 19, no. 5, pp. 1752–
1755, 2001.

[46] C. Lent and P. Tougaw, “A Device Architecture for Computing with
Quantum Dots,” Proc. IEEE, vol. 85, no. 4, pp. 541–557, 1997.

[47] D. A. Reis et al., “A Methodology for Standard Cell Design for QCA,”
in ISCAS, 2016, pp. 2114–2117.

[48] T. Huff et al., “Binary atomic silicon logic,” Nat. Electron., vol. 1, no. 12,
pp. 636–643, 2018.

[49] M. B. Haider et al., “Controlled Coupling and Occupation of Silicon
Atomic Quantum Dots at Room Temperature,” Phys. Rev. Lett., vol.
102, p. 046805, 2009.

[50] T. Huff et al., “Atomic White-Out: Enabling Atomic Circuitry through
Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon
Surface,” ACS Nano, vol. 11 9, pp. 8636–8642, 2017.

[51] R. A. Wolkow et al., “Silicon Atomic Quantum Dots Enable Beyond-
CMOS Electronics,” in Field-Coupled Nanocomputing, 2013.

[52] N. Pavliček et al., “Tip-induced passivation of dangling bonds on
hydrogenated Si(100)-2×1,” APL, vol. 111, no. 5, p. 053104, 2017.

[53] M. Rashidi et al., “Initiating and Monitoring the Evolution of Single
Electrons Within Atom-Defined Structures,” PRL, vol. 121, p. 166801,
2018.

[54] M. Walter et al., “Hexagons are the Bestagons: Design Automation for
Silicon Dangling Bond Logic,” in DAC, 2022, pp. 739–744.

https://github.com/li-yangshuai/iFCN

14

[55] B. Hien et al., “Reducing Wire Crossings in Field-Coupled Nanotech-
nologies,” in IEEE-NANO, 2024, pp. 155–160.

[56] F. Sill Torres et al., “On the Impact of the Synchronization Constraint
and Interconnections in Quantum-dot Cellular Automata,” MICPRO,
vol. 76, pp. 103–109, 2020.

[57] V. Vankamamidi et al., “Clocking and Cell Placement for QCA,” in
IEEE-NANO, vol. 1, 2006, pp. 343–346.

[58] C. Campos et al., “USE: A Universal, Scalable and Efficient clocking
scheme for QCA,” IEEE TCAD, vol. 35, pp. 513–517, 2016.

[59] M. Goswami et al., “An Efficient Clocking Scheme for Quantum-dot
Cellular Automata,” Int. J. Electron. Lett., vol. 8, no. 1, pp. 83–96,
2020.

[60] M. Walter et al., “Placement and Routing for Tile-Based Field-Coupled
Nanocomputing Circuits Is NP-Complete (Research Note),” JETC,
vol. 15, no. 3, 2019.

[61] P. E. Hart et al., “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[62] B. Steinbach, Recent Progress in the Boolean Domain. Cambridge
Scholars Publishing, 2014.

[63] A. Trindade et al., “A Placement and Routing Algorithm for Quantum-
dot Cellular Automata,” in SBCCI, 2016, pp. 1–6.

[64] G. Fontes et al., “Placement and Routing by Overlapping and Merging
QCA Gates,” in ISCAS, 2018.

[65] K. McElvain, “IWLS’93 Benchmark Set: Version 4.0,” 1993.
[66] M. Walter et al., “Verification for Field-coupled Nanocomputing Cir-

cuits,” in DAC, 2020.

Simon Hofmann (Graduate Student Member, IEEE)
received the M.S. degree in electrical engineering
from the Technical University of Munich (TUM),
Munich, Germany, in 2022. He is currently pur-
suing the Ph.D. degree with the Chair for Design
Automation, TUM, and is also a Quantum Software
Engineer with the Munich Quantum Software Com-
pany (MQSC), Garching near Munich, Germany.
His research interests include design automation for
Field-coupled Nanotechnologies (FCN).

Marcel Walter (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Bremen, Bremen, Germany, in 2021 for his work on
algorithms for the physical design of emerging post-
CMOS nanotechnologies. He is currently a Post-
doctoral Researcher with the Technical University
of Munich and a Senior Quantum Software Engi-
neer with the Munich Quantum Software Company
(MQSC). In 2024, he served as a substitute professor
at the University of Bremen. Furthermore, he is the
initiator and maintainer of the "fiction" framework

for the logic synthesis, physical design, verification, and simulation of Field-
coupled Nanotechnologies, as well as the "aigverse" library that bridges the
gap between machine learning and logic synthesis.

Robert Wille (Senior Member, IEEE) is a Full
and Distinguished Professor with the Technical Uni-
versity of Munich, CEO of the Munich Quantum
Software Company (MQSC), and Scientific Direc-
tor with the Software Competence Center Hagen-
berg. His research focuses on the design of circuits
and systems for both conventional and emerging
technologies, with over 15 years of contributions
to quantum computing—particularly in foundational
software and design automation. He has received
numerous accolades, including Best Paper Awards,

the DAC Under-40 Innovator Award, a Google Research Award, and an ERC
Consolidator Grant. He collaborates with leading academic and industrial
partners, plays a key role in initiatives such as the Munich Quantum Valley,
and actively supports technology transfer through his roles in industry. He
has published over 400 papers and serves on editorial and advisory boards of
major journals and conferences.

	Introduction
	Background
	Quantum-dot Cellular Automata (QCA)
	Silicon Dangling Bonds (SiDBs)
	Physical Design Algorithms
	Technology Constraints
	Exact Approaches
	Heuristic Approaches
	Post-Layout Optimization
	Hexagonalization

	Efficient and Scalable Layout Design with Discretionary Cost Objectives
	General Idea
	Algorithm Overview
	Algorithmic Dimensions
	PI Placement Policy
	Fanout Substitution Strategy
	Topological Node Ordering
	SSG Count by Effort Mode

	Search Procedure
	Cost Objectives

	Experimental Evaluation
	Experimental Setup
	Numerical Results
	Parameter Sweeps
	Effort-Mode Runtime/Quality Trade-off
	Impact of numExpansions
	Single- vs. Multithreaded Performance

	Illustrative Examples
	Different Cost Objectives
	Backtracking through SSGs
	Layout Comparison

	Discussion & Outlook

	Conclusion
	References
	Biographies
	Simon Hofmann
	Marcel Walter
	Robert Wille

