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Abstract—Silicon Dangling Bond (SiDB) logic is a promising technology
for energy-efficient computation, supported by significant advancements
in manufacturing and design automation. However, physical simulation,
essential for accurately predicting the behavior of SiDB logic prior to costly
manufacturing, lags behind these developments. In particular, exact physical
simulation, which scales exponentially with base 3, remains infeasible for
larger SiDB assemblies, limiting its utility to small structures such as single
gates. This computational bottleneck slows progress in SiDB technology and
hinders the establishment of reliable ground truths for heuristic approaches.
To address the challenge, this work presents a novel methodology for exact
SiDB simulation that restructures the exponential search space according
to a hierarchical clustering. The hierarchy structure enables a systematic
pruning of the search space at its different levels: it provides an ordering
of interactions between clusters of SiDBs to facilitate efficacious exploitation
of dynamically-inferred problem-specific constraints—like solving a Sudoku.
Experimental results demonstrate that the effective exponential base can be
lowered to approximately 1.3, enabling, for the first time, the exact physical
simulation of entire multi-gate SiDB circuits in minutes that would take the
state of the art millions of years to compute. This breakthrough establishes a
robust ground truth for SiDB logic validation, marking a pivotal step toward
scalable, energy-efficient, and atomic-scale computing.

I. INTRODUCTION

The rapid expansion of AI and digital transformation across industries
is dramatically reshaping the demand for computing power. This surge
in demand has significantly increased the need for data centers, which
are set to consume three times the energy they use today by 2030 [1].
Traditional computing architectures, however, are facing physical and
economic limitations, and the rising energy needs have spurred interest
in more energy-efficient computing technologies.

One promising technology for energy-efficient computation is based
on Silicon Dangling Bonds (SiDBs) to enable computing at the atomic
level [2]–[5]. In this approach, precise control of charge states enables
logic and memory functionality, overcoming the limitations of traditional
transistor-based designs. SiDB logic has the potential to revolutionize
computing by significantly reducing power consumption beyond the
capabilities of conventional CMOS [6].

This growing interest has already led to the development of gate and
circuit libraries, as well as design automation solutions aimed at enabling
large-scale device design using the SiDB technology [7]–[17]. Moreover,
with the establishment of the first enterprise adopters like Quantum
Silicon Inc., SiDB technology is making its way from academic research
to industrial applications [4], [5], [18]–[20].

But while significant progress has been made in manufacturing and de-
sign automation tools for SiDB technology, physical simulation, essential
for predicting the behavior of SiDB logic prior to costly manufacturing,
is still lagging behind [2], [3], [7], [8], [21], [22]. In particular, exact
physical simulation, which is essential for 1) establishing a reliable
ground truth to evaluate the accuracy of heuristic approaches, and
2) supporting applications that require not only the ground state but all
possible solutions, such as temperature-dependent simulations [23], is far
behind manufacturing capabilities. More precisely, the state of the art in
exact physical simulation is limited to simulating small SiDB assemblies
such as single gates [22], rendering exact multi-gate simulation infeasible
until now.

This backlog in exact physical simulation, compared to design au-
tomation and manufacturing capabilities, is due to its highly complex
nature, requiring the solution of quantum mechanical equations. Even
with semi-classical models, simulations require exhaustive consideration

of a search space that scales exponentially with 3n, where n is the
number of SiDBs in the layout, leading to runtime demands that quickly
become prohibitive.

To master this exponential complexity, this paper presents a new
methodology for the physical simulation of SiDBs, capable of consis-
tently and significantly reducing the exponential base. Our approach uses
hierarchical clustering, where SiDBs are repeatedly grouped according
to their electrostatic interactions to enable a pioneering command of the
simulation search space. This structures the interaction network among
all considered SiDBs, providing critical information for targeted search
space reduction to efficaciously exploit problem-specific constraints.
The hierarchically restructured search space is pruned systematically
at different levels, iteratively leveraging constraints accumulated from
previous search space reductions to produce further constraints—much
like the human method to Sudoku solving.

Experimental evaluations show that a substantial reduction in the
exponential base is achieved, bringing it down to around 1.3 for SiDB
logic implementations. This advancement enables the simulation of SiDB
circuits for the first time, establishing a ground truth for the physical
simulation of SiDB circuits. This highlights the profound impact of
search space pruning in a cluster hierarchy on mastering the complexity
of exact physical simulation of SiDBs, paving the way for energy-
efficient and atomic-scale computing.

The remainder of this paper is structured as follows: in order to make
this work self-contained, Section II reviews SiDBs, how they are used for
logic, and the physical model to describe their electrostatic interactions,
which is essential to understand the working principle in their application
to logic realization. Section III explains what exact physical simulation
means in the context of SiDB logic and reviews its state of the art.
By outlining the current limitations, we underscore the urgent need for
an efficient, exact physical simulator capable of handling multi-gate
SiDB layouts, establishing a ground truth, and enabling temperature-
dependent simulation. Section IV is the main contribution of this paper
as it provides a detailed introduction to the proposed methodology.
Section V presents an exhaustive experimental evaluation demonstrating
the newfound mastery over exponential complexity, showcasing the
ability to simulate multi-gate SiDB circuits. Finally, Section VI concludes
the paper.

II. PRELIMINARIES

This section covers the main concepts necessary for understanding
the remainder of this work. First, Section II-A reviews SiDBs, explaining
how they can be used to conduct computation at the atomic scale. Second,
Section II-B reviews the physical model of SiDBs, which is crucial for
understanding their underlying working principles and provides the basis
for simulation methods.

A. The SiDB Logic Platform
The fabrication of Silicon Dangling Bonds (SiDBs) begins with a

hydrogen-passivated silicon crystal surface (H-Si(100)-2×1). Using a
Scanning Tunneling Microscope (STM), hydrogen atoms are removed
with atomic precision to create SiDBs, enabling their controlled ar-
rangement at the atomic level [3], [4], [24]. An undisturbed SiDB
hosts two electrons, charging it negatively (−). However, depending
on surrounding electrostatic interactions, the charge state can change:
moderately strong electrostatic interactions (> −0.9V;< −0.3V) may
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Fig. 1: SiDB Charge State Variability. Charge states −, 0 and + are
respectively indicated by turquoise, gray, and red.
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Fig. 2: Operational Essentials of the SiDB Binary Logic Platform.

leave the SiDB neutral (0), while strong interactions (< −0.9V) can
render it positively charged (+) [8], [21].

Example 1. Consider Fig. 1, which sketches three SiDBs in three
different arrangements. In Fig. 1a, the SiDBs are spaced four positions
apart, resulting in weak electrostatic interactions that do not affect the
charge states. In contrast, Fig. 1b shows an arrangement in which
two SiDBs are positioned adjacent to each other, leading to strong
electrostatic interactions (< −0.9V) and causing the upper SiDB to
become positively charged. In Fig. 1c, the SiDBs are placed at a medium
distance, so that one SiDB becomes neutral while the other two remain
negative. This case is particularly interesting as it may encode binary
information: bit 1 is encoded by the location of the negative charge state
in the pair highlighted by the dashed box, which spans less than 1 nm.

This pair of two SiDBs is referred to as a Binary-dot Logic (BDL)
pair. Since SiDBs form an interwoven system with variable charge states,
logic gates can be realized that operate solely by electrostatic repulsion.
A single SiDB, known as a perturber, can be used to apply electrostatic
pressure to set adjacent SiDB BDL pairs into a desired binary state. In
fact, gates with a footprint of less than 30 nm2 have been fabricated this
way [24].

Example 2. Consider the placement of six SiDBs in two distinct
arrangements, as illustrated in Fig. 2. Fig. 2a depicts an OR gate
(experimentally verified in [24]) with the input 10 and an output of 1.
This information is encoded in the charge states of the BDL pairs. The
input 1 is enforced by the perturber, which exerts electrostatic pressure
on the left input BDL pair. Adjusting the distance between the BDL
pairs reduces the electrostatic repulsion, resulting in altered behavior.
Consequently, Fig. 2b depicts an AND gate with the input pattern 10
applied, yielding the expected output 0.

After introducing the SiDB technology and providing an understanding
of how SiDBs can be used to construct logic gates based on the variability
of charge states, the next section reviews the physical model used to
qualitatively describe and simulate their behavior. This model serves as
the basis for simulating the charge states of SiDBs.

B. Physical Model of SiDBs

As mentioned, SiDBs interact electrostatically with each other, which
is described by the screened Coulomb potential as follows: let L denote
a layout of SiDBs, such that any charge distribution for L is represented
by a function of the type D := {−1, 0, 1}L. We denote the set of charge

states as {−,0,+} in the remainder. For any two SiDBs i, j ∈ L, the
electrostatic potential Vi,j for a charge distribution D ∈ D is given by

Vi,j(D) = − qe
4πϵ0ϵr

· e
−

di,j
λtf

di,j
·D(j), (1)

where λtf defines the Thomas-Fermi screening length and ϵr the di-
electric constant, which were experimentally extracted to be 5 nm and
5.6, respectively [21], [24]. In addition, ϵ0, qe, and di,j are the vacuum
permittivity, the electron charge (qe = −e; e: elementary charge),
and the Euclidean distance between SiDBs i and j, respectively. These
electrostatic interactions are locally accumulated at each SiDB i. Thus,
its local potential for the given charge distribution is calculated as

Vlocal,i(D) =
∑

j∈L, j ̸=i

Vi,j(D). (2)

By the physical model of SiDBs and their interactions, the local
electrostatic potential at SiDB i dictates the charge state it attains. This
means that not all D ∈ D adhere to the physical model. Instead, for such
adherence, charge distributions need to obey the so-called Population
Stability and Configuration Stability, which can be expressed by the
respective following conditions.

1) For each SiDB i ∈ L, D(i) = − when µ− + Vlocal,i(D) · qe < 0,
D(i) = + when µ++Vlocal,i(D)·qe > 0, and D(i) = 0 otherwise.
Thus, µ− and µ+ represent the thresholds that bound the energetic
ranges associated with the respective charge states.

2) There exists no D′ ̸= D that is reachable from D with a single-
electron hop between SiDBs such that the system’s total electrostatic
potential energy reduces. Otherwise, the system will spontaneously
transition from D to D′.

If both conditions are fulfilled for D, this state is said to be metastable,
or, synonymously, physically valid, which we denote by means of a
predicate V for which V(D) then evaluates to true. Therefore, the
primary objective of any physical simulator for SiDB systems is to
identify metastable charge distributions, with the lowest-energy configu-
ration referred to as the ground state. The size of the simulation search
space presents a significant computational challenge, since |D| = 3n,
where n = |L|. Here, n represents the number of SiDBs, each of which
can exist in one of the three aforementioned charge states. The task
of determining all solutions, i. e., all possible charge distributions that
satisfy V , is referred to as exact physical simulation, which is considered
in this work.

III. EXACT PHYSICAL SIMULATION & RELATED WORK

This section discusses the exact physical simulation of SiDB layouts
and reviews the status quo. First, in Section III-A, the considered problem
is motivated and described. Second, in Section III-B, the state of the art
in exact physical simulation is reviewed. Underlining current limitations,
we highlight the need for a more advanced and efficient approach.

A. Exact Physical Simulation of SiDB Layouts

Exact physical simulation of SiDB logic is a crucial step in its
development as a post-CMOS technology, as it 1) establishes a re-
liable ground truth to evaluate the accuracy of heuristic approaches,
2) supports applications such as temperature-dependent simulations
that depend on all possible solutions to the system that the physical
model offers [23], and, 3) enables the exhaustive search for logic gate
implementations, which requires certificates of gate operation for each
candidate implementation [25]. Accordingly, the objective of simulating
SiDBs exactly is to identify all possible charge distributions that meet the
condition of physical validity, meaning they align with the underlying
physical model. Thus, the objective of this task is to compute the
set DV := {D ∈ D | V(D)} . Since the number of possible charge
configurations is exponential with base 3, finding the exhaustive subset
of physically valid ones is a complex task. An initial approach forms
DV with a runtime complexity of Θ(3n) through enumerating all of D,
though the state of the art manages to achieve O(3n), as discussed in
more detail hereafter [22], [26].



B. State of the Art and its Limitations

Simulating SiDBs in an exact fashion is particularly challenging due to
the base-3 exponentially large search space. The state-of-the-art physical
simulator, QuickExact, employs a technique to address this challenge:
search space pruning. Although this simulator may still enumerate
all 3n possible charge distributions, it is able to determine the charge
state of d SiDBs based on their specific locations and corresponding
electrostatic interactions before the enumeration process begins. This
reduces the search space by a factor of 3d, which significantly improves
simulation runtimes for d > 0. As a result, QuickExact made it feasible
to exactly simulate single gates with up to around 30 SiDBs in reasonable
runtime [22].

Specifically, the state-of-the-art search space pruning can statically
track down SiDBs in sparsely populated areas of the given layout,
pre-determining that they must be negatively charged in all possible
physically valid charge distributions. Hereby, certain specifics of the
input layout are exploited for an exponential benefit in computing DV ,
yet, the state of the art fails to do so generically: it cannot make
inferences about groups of SiDBs to further reduce the search space.
This is illustrated with the following example.

Example 3. Consider the layout seen in Fig. 1b as an exact physical
simulation problem. When a pruning process only assesses each SiDB
separately, it would determine the separated SiDB to be negatively
charged, while leaving e. g., the all-negative charge distribution to be
validated in the enumeration of the remaining search space. However,
with the intuition given in Example 1, one may infer that the strong
electrostatic interaction between the two closely-spaced SiDBs in this
layout—say, i and j—causes them to assume oppositely polarized charge
states in any metastable charge distribution. Thus, 6 out of the 32 = 9
possible charge state assignments to SiDBs i and j, can be pruned,
leaving only [i 7→ 0, j 7→ 0], [i 7→ −, j 7→ +], and [i 7→ +, j 7→ −].

To summarize, the technique of capitalizing on specifics of the given
layout of SiDBs is a potent seed, having opened the door to single-
gate exact simulation. However, while the state-of-the-art adoption of
the search space pruning technique allows it to infer restrictions on the
charge state of single SiDBs, its pruning assessments remain limited
to evaluating possibilities for atomic entities. As a result, the benefit is
occasional, causing it to succumb to the base-3 exponential search space
that remains when the static analysis leaves more than ≈ 30 SiDBs
without a fixed charge state.

With these limitations of the state of the art in mind, the following
section proposes a methodology to fully seize the potency of search space
pruning, allowing the established technique to come to fruition with the
exact simulation of larger circuit layouts.

IV. PROPOSED METHODOLOGY

Motivated by the observations from Section III-B, in this section, we
propose a methodology that leverages the search space pruning technique
to a far greater extent than previously achieved. In fact, the technique is
generalized and extended for higher-order reasoning, enabling pruning
assessments for non-atomic clusters of SiDBs. The generic effectiveness
of this approach, as investigated later in Section V, directly shifts the
time-complexity of the exact simulation of SiDB logic layouts with n
SiDBs from O(3n) to approximately O(1.3n).

This section starts with Section IV-A outlining the proposed idea.
Afterward, Section IV-B provides a substantive, yet high-level view of
the proposed methodology’s course, accentuating the divergence from
existing solutions to exact SiDB simulation with its unique, constructive
approach. Accordingly, the remaining subsections, with in particular
Section IV-C, build toward an understanding of the proposed work
through an elaborated series of definitions.

A. An Intuition for Search Space Pruning in a Cluster Hierarchy

In Section III-B, it was reviewed how the state of the art can infer
limitations on the charge state of single SiDBs. With a much abstracted
view, the analogy with the human method of solving a Sudoku is found:
given some initial state of the Sudoku, one looks for squares that can be
filled in directly using the available constraints. The analogy with search

space pruning, as the state of the art adopts it, ends here, though for the
proposed extension and generalization thereof, it only begins.

After one has filled in a Sudoku square through direct inference on
the initial state, the constraints that emerge with this result may in turn
be exploited to make basic inferences on this new state. Precisely this
intuition translates to the proposed extension to search space pruning:
employing iteration. After some iterations, the same trick might not yield
anything further. The common strategy is then to find squares for which
the possible value assignments are mutually dependent. Upon making
such a grouping, one treats the group as a single entity with a bundled
outgoing effect, allowing further deductions to be made.

The above is directly analogous to the proposed approach to exact
simulation in which the objective of search space pruning is inherent
to every algorithmic step. Adopting the elevated perspective that was
sketched, state-of-the-art single SiDB pruning assessments can now be
seen as inferences at the lowest level, since they can be inferred directly.
Going beyond, and in line with the movements in the Sudoku-solving
analogy, we may advance to higher-level reasoning through merging
clusters of SiDBs into one. With such successive merges, a cluster
hierarchy is established.

Fig. 3 may be glanced at for a visualization of the process described
above, although definitions that allow for rigid interpretation are still to
come with the following subsections.

B. Synopsis: Obtaining all Metastable States, Semi-Constructively
The proposed methodology consists of two consecutive stages that

are elaborated on throughout the remainder of this section. In the
first stage, which we refer to as the construction stage and discuss
in detail in Section IV-C, a recursive data structure is built up that
represents a minimized search space. The type of this structure is in
essence the prominent contribution of this work, since this information-
rich yet efficient reinterpretation of the exponential simulation search
space naturally gives rise to an implementation that capitalizes on
the pioneering command thereof: this proposed exact SiDB simulation
algorithm is presented in Section V.

In the second stage of our approach, dually referred to as the destruc-
tion stage and described in Section IV-D, the data structure that was
constructed in the preceding stage is broken down throughout a recursive
unfolding procedure that efficiently extracts all physically valid charge
distributions. Rather than just enumerating all possibilities in a (reduced)
search space—i. e., destructive methodology, which foregoing exact
simulators adopt—the proposed destructive stage enumerates possibilities
in a bespoke arboreal representation of the search space in which it can
prune branches, making it vastly more efficient.

C. Construction of the Ground State Space
To motivate the constructive approach to exact physical simulation of

SiDBs, it can be considered that for logic applications, |DV |≪ |D|;
i. e., all metastable charge distributions form a minute portion of the
search space. Since, as outlined in Section III, computing the former set
is the objective of this exact simulation task, it would be tremendously
more efficient to construct DV rather than filter out all D ∈ D for which
¬V(D)—as implemented by current destructive methodologies.

While conceptually ideal, such methods have remained elusive due to
the global interdependence of the SiDBs’ charge states, as outlined in
the following example.

Example 4. We consider the task of obtaining DV for an SiDB layout
of two gates G1, G2 that are connected in sequence. Since the gates
are separated with the intent to allow for independent functioning, the
Coulombic potential between SiDBs in separate gates is weak due to
the exponential interaction decay. Yet, an accumulation of many of these
inter-gate interactions at an SiDB in G1 can easily cause it to cross a
charge state transition threshold which it would otherwise not without
G2’s presence. This affects the possible charge distributions in G1, in
turn influencing G2 to complete the circle. Thus, the fully connected
interaction network is not easily divided such that DV can be determined
by first computing it for either gate separately.

Thus, it becomes difficult to form solutions to bigger exact physical
simulation problems by combining results from separated sub-problems.
Difficult, but not impossible, we demonstrate in Section IV-D, which



Fig. 3: Demonstration of a ground state space construction for a layout with four SiDBs under µ− = −0.32V, λtf = 5nm, and ϵr = 5.6. The
information state transitions that are indicated by the vertical lines only overlap clusters that are considered in the corresponding procedure.

critically depends on a restructured search space construct in which a
destructive filtering methodology can be applied.

The construction stage, described hereafter, produces a restructured
and minimized exact simulation search space that we call the ground
state space. In short, the construction proceeds by strategically merging
highly interactive clusters of SiDBs whilst pruning sections of the search
space by analyzing the associated bounds on local electrostatic potentials.
Through prioritizing only these most important interactions, the search
space is pruned effectively and efficaciously.

In the following paragraphs, sequentially dependent definitions are
given in order to express the aforementioned quintessential structure
in its most important concepts. To enable an intuitive understanding of
the construction stage, an exemplifying visualization is given in Fig. 3,
where the ground state space construction of a 4-SiDB layout is shown.
Consecutive states throughout this construction are displayed as labeled
by 0 up to 13 , with state transitions indicated by vertical separators that
we may refer to by, e. g., 0 → 1 . As definitions roll out throughout the
following, relevant references are made to Fig. 3, for which interpretation
thusly becomes apparent over this course. Alongside, Algorithm 1
provides a high-level description of this stage.

1) SiDB Layouts as Cluster Hierarchies: A prerequisite for the ability
to solve bigger exact simulation problems from solutions to smaller ones
is a recursive subdivision of the given layout of SiDBs. A hierarchical
clustering naturally emerges, forming the root structure that the entire
proposed simulation approach depends on.1 The recursive structure is
bounded on the top by the top cluster, i. e., the cluster containing all
SiDBs in L that are each independently represented by singleton clusters
at the bottom of the hierarchy. Any set of non-overlapping clusters that
unify to L is called a clustering.

In Fig. 3, a layout with four SiDBs is shown, in which groupings
of nearby SiDBs are made that are themselves, in turn, grouped to
form the top cluster. Now recall from Eq. (1) that the inter-SiDB
Coulombic potential decays exponentially over distance di,j , and further
recall that the charge state of any SiDB depends on the accumulation
of electrostatic potential with each other SiDB in the layout. Through
forming clusters based on a proximity heuristic, the resulting hierarchy
highlights which interactions are most critically interdependent. This
property is exploited throughout the proposed methodology’s course,
whose efficacy thus depends on the quality of the hierarchical clustering
by the aforementioned heuristic.

2) A Complete Information Structure of Potential Bounds: As we aim
to enable the application of the search space pruning technique to any
clustering of L in an iterated process, the technique is adopted through
a generic conjoining of exclusions, rather than the specialized approach
that the state of the art uses.2 Now, in order to achieve an information

1Such a structure may be obtained through established methods [27].
2QuickExact looks for SiDBs that must be negatively charged in a separate

procedure from finding those that may be positively charged.

structure from any given clustering χ in which such exclusions are to be
made, it is imperative that the structure is complete in the representation
of an information state in which bounds on the electrostatic potential
local to each SiDB separately may be inferred. In accordance with the
fully connected nature of the interactions within a system of SiDBs, any
cluster C ∈ χ is annotated with such potential bounds relative to each
SiDB i ∈ L. Such information represents the bounds on the partial sum
of the electrostatic potential local to i, where only the interactions from
SiDBs in C are considered.

To illustrate, for D− and D+ respectively denoting the all-negative
and all-positive charge distributions, a pair of potential bounds in an
information structure in which no pruning has yet been performed can
be formulated as follows:

∑
j∈C Vi,j(Dz) with z = − and z = + for

the lower and upper bound respectively.
3) Charge Multisets; Counting Charge States in Clusters: While, as

described in Section III-B, state-of-the-art search space pruning is limited
to excluding specific charge states assigned to SiDBs, we demonstrate
that this is only the first step of a much more powerful pruning
procedure. Enabling such extension is non-trivial, however: whereas
pruning charge states for each SiDB separately requires constant time,
i. e., ∀i ∈ L .O(|{i} → {−,0,+}|) = O(1), a naive adaptation of
this process that operates on separate clusters C ⊆ L in a clustering χ
(i. e., for which

⋃
χ = L) is quickly met with an exponential blow-up

in |C|, i. e., ∀C ∈ χ .O(|C → {−,0,+}|) = O(3|C|). Consequently,
this calls for an alternative pruning approach in which certain data are
conscientiously unified.

This is where it becomes important that the clustering of L distin-
guishes clusters of SiDBs appropriately: stronger (intra-cluster) inter-
actions are separated from the weaker (inter-cluster) ones. The pro-
posed methodology takes advantage of the fact that, e. g., charge state
assignments [1 7→ −, 0 7→ 0] and [0 7→ −, 1 7→ 0] influence
SiDB 4 in Fig. 3 with a similarly-valued electrostatic interaction, since
d0,4 ≈ d1,4. In fact, both charge state assignments may be unified to an
assignment from the cluster {1, 2} to the multiset {{−,0}}, i. e., a set-
like structure that keeps occurrence counts of its elements such that, e. g.,
{{−,−}} ≠ {{−}}. Now, denoting the set of all charge multisets with k
(not necessarily unique) charge states as Mk({−,0,+}), a procedure
that prunes charge multisets assigned to separate clusters C scales
quadratically in |C|: O(|{C} →M|C|({−,0,+})|) = O(|C|2).3

The effectiveness of pruning charge multisets has already been il-
lustrated with Example 3, in which the multisets {{−,−}}, {{−,0}},
{{0,+}}, and {{+,+}} can be pruned, leaving {{−,+}} and {{0,0}}.

4) Refining Charge Spaces through Fixed Point Iteration: As sug-
gested in Section IV-C2, potential bounds for an unpruned search space
are determined from ranging over {−,0,+}, i. e., the set of charge states
that we initially assume to be attainable. Initially, that is, since a search

3Note that for all sets A and k ∈ N, |Mk(A)| =
(k+|A|−1

k

)
.



Algorithm 1: Ground State Space Construction
Input: An SiDB layout L
Output: A minimized hierarchical ground state search space

1 InitialClustering ← {{i} | i ∈ L}
2 S ← {(C, {{{−}}, {{0}}, {{+}}}) | C ∈ InitialClustering}
3 while S ̸= {(L, {. . . })} do
4 S′ ← S
5 repeat S ← S′; S′ ← REFINEALLCHARGESPACES(S)
6 until S = S′

7 S ← MERGEANDFILTER(S)

8 return S

space pruning procedure expressly aims to reduce the set of candidate
charge states for all SiDBs through examining each candidate separately.
With this perspective on the search space minimization that the state
of the art employs, one realizes that it falls short of iteration; upon
a reduction of the set of attainable charge states, the derived potential
bounds are updated accordingly, which may enable further minimization
of the simulation search space.

With the perceptual elevation from charge states assignments to SiDBs
to charge multiset assignments to clusters, we arrive at charge spaces,
which we define to be sets containing charge multisets that are attainable
by some cluster. The construction stage starts with the initial clustering
of only singleton clusters (Line 1 of Algorithm 1), and, premised on the
lack of assumptions on DV , assigns to each cluster the initial charge
space {{{−}}, {{0}}, {{+}}} (Line 2 of Algorithm 1). This restructures
the simulation search space D, since each D ∈ D is represented in this
initial state of the propose0d information structure: each charge state
assignment is represented by the existence of a corresponding bijection
between a cluster and an element of its charge space. I. e., for all i ∈ L,
{{D(i)}} is an element of the initial charge space of singleton cluster
{i}, raising the assignment [i 7→ {{D(i)}}]. With this restructured search
space, pruning to the extent that the state of the art adopts it is expressed
through an initial refining of all charge spaces, adjusting potential bounds
to any new constraints accordingly.

The starting point for iterative charge space refining is depicted in
state 0 for the example layout in Fig. 3, and is regarded as the
initial information state. For this example layout along with specified
physical simulation parameters, it can be determined in the first refining
step that cluster {4} may not attain {{+}}, i. e., SiDB 4 cannot be
positively charged in any charge distribution in DV . This progresses
the execution to information state 1 , in which the potential bounds are
refined accordingly. Precisely the monotonicity of the refining procedure
gives rise to the constructive component of the proposed methodology:
starting with no information, the information structure that ultimately
becomes the minimized ground state space is built up dynamically
from constraints on DV through successive pruning passes. When such
a pruning pass fails to find a charge space element to exclude, the
information state is said to have reached a fixed point (e. g., 2 = 3
in Fig. 3), signaling the termination of the iteration. Lines 5–6 of
Algorithm 1 describe this fixed point iteration.

5) Merging Charge Spaces Enables Efficacious Filtering: To enable
charge multiset pruning for multi-SiDB clusters, the proposed method-
ology relies on a cluster hierarchy that reveals an ordering of the most
strongly interacting (groups of) SiDBs. For the context of an algorithmic
execution, this hierarchy can be thought of as the product of a successive
transmutation of the initially all-singleton clustering of L through merge
actions, until only the top cluster is left. Each merge operation takes the
strongest interacting clusters of SiDBs together and merges them into a
new cluster.4

In Fig. 3, these operations are performed at the information state
transitions with the green merge icon (e. g., 2 → 3 ). Here, it can
be seen that the charge spaces—shown in their entirety for every cluster
in every respective clustering associated with the successive information
states—of the merged clusters {1} and {2} are merged through taking
their “cross summation”, forming the charge space of the merged

4The interaction strength between two clusters can be interpreted in various
ways—Ward’s method from [28] was used in the evaluation in Section V.

cluster {1, 2}.5 Note here that the constructive character of this stage
of the proposed methodology makes a strong appearance: when merging
charge spaces, the new charge space is directly constructed from the
ones to merge; e. g., {{+,+}} is never considered to be a charge space
element of cluster {3, 4} ( 6 → 7 ).

It is important to observe here that multisets in constructed charge
spaces are composed out of multisets from respective charge spaces
from the clusters that were merged, and, in particular, multiple multiset
compositions may compose the same multiset.6 Thus, charge multisets
inherently have a compositional structure that is consistent with the
subhierarchy that is bounded by the associated cluster—this structure
is unfolded in the destruction that is described in Section IV-D.7

Finally, the last procedure of the construction to describe is the filter
step, which directly follows a merge step each time. Under fixed potential
bounds derived from the respective charge spaces of clusters that were
not merged with the previous merge, the new charge space is refined
in detail: by checking each composition of each charge multiset that is
being assessed, the proposed approach to exact simulation selectively
taps into the exponential complexity of the simulation problem, making
assessments based on detailed potential bounds information that is
specific to the composition. After the charge space is filtered such that
the elements for which all compositions were pruned are removed, the
potential bounds for each element are flattened in order to mitigate the
exponential information blow-up: the resulting bounds are determined
through an inclusive unification of the respectively associated bounds
for each composition of the charge multiset, thus compiling multiple
potential bounds into one whilst remaining exact.

Line 7 of Algorithm 1 describes the entire process that transmutes
a clustering through merging the most strongly interacting clusters,
constructing a new charge space that is refined with the use of exponential
information as described. In fact, the detailed filtering that happens
here is efficacious: the strongest interactions yield the most variation in
the potential bounds over different compositions of the charge multiset
of which compositions are filtered, in turn hosting optimal likelihood
of successful pruning and thus maximizing the use of the exponential
information.8

D. Destruction: Extracting All Valid Charge Distributions
After the construction phase outlined in the previous section terminates

when the top cluster charge space reaches a fixed point, a recursive infor-
mation structure of hierarchically related charge spaces of decomposable
charge multisets is returned: the ground state space. The goal of the
destruction phase is to unfold this structure in all the ways in order to
extract all physically valid charge distributions.

Starting with the compositions of the charge space elements of the
top cluster, the destruction creates branches through recursive calls for
each composition of a charge multiset that is being unfolded into the
charge multisets that formed it, as seen in Lines 7–9 of Algorithm 2
which describes the recursive unfolding process described here. Thus,
each branch specializes the information state of potential bounds, which
is updated in such a way that the flattened potential bounds are now
specialized to the specific composition of the destructed charge multiset
(Line 8 of Algorithm 2).

Paramount to the efficiency of the proposed exact simulation method,
however, are intermediary validity checks at each level of the recursion
throughout this unfolding process. Using the information state that is spe-
cialized to the current clustering state—i. e., a clustering that associates
one charge space element for each cluster in it—the algorithm assesses
whether the clustering state may unfold into a physically valid charge
distribution, terminating this branch of the recursion if the contrary is
found to be true (Lines 1–2 of Algorithm 2). Alternatively, the recursion
finds a base case when the clustering is the singleton clustering, at which

5To perform a cross summation of two sets of multisets A and B means
to produce the set that contains the multisets that are formed by summing the
respective occurrence counts of a and b, where (a, b) ∈ A×B.

6E. g.: ({1}, {{−}}) merged with ({2}, {{+}}) becomes ({1, 2}, {{−,+}}),
same as ({1}, {{+}}) merged with ({2}, {{−}}).

7E. g., {1} ⊂ {1, 2} ⊃ {2} is a subhierarchy of the complete one in Fig. 3.
8When a charge multiset contains a charge state that cannot be assigned to any

SiDB in the associated cluster under considered potential bounds, it is pruned.
This is described formally in chapter 3 of [29].



Algorithm 2: Extract Metastable Charge Distributions
Input: A clustering state X , i. e., X = {(C1,m1), . . . , (Ck,mk)} for

some 1 ≤ k ≤ n where(
∀(C,m) ∈ X .C ⊆ L ∧m ∈M|C|({−,0,+})

)
and

{Ci}1≤i≤k is a clustering of L
Output: The set of all physically valid charge distributions that can be

extracted from X
1 if potential bounds analysis for X yields that there are no physically

valid charge distributions that can be extracted then
2 return ∅
3 if |X| = n then // X is an all-singleton clustering state
4 return EXTRACTCHARGEDISTRIBUTION(X)

5 (C̄, m̄)← CHOOSECLUSTERTOUNFOLD(X) // e.g., largest
6 V ← ∅ // physically valid charge distributions
7 foreach Composition ∈ GETCOMPOSITIONS(C̄, m̄) do
8 X′ ← replace (C̄, m̄) in X with Composition and specialize

potential bounds accordingly
9 V ← V ∪ EXTRACTMETASTABLECHARGEDISTRIBUTIONS(X′)

10 return V

point all potential bounds correspond precisely to the local potentials for
the charge distribution that is trivially extracted from the clustering state
containing only singleton charge multisets (Lines 3–4 of Algorithm 2).

Concluding the description of the proposed methodology’s course,
the set of all valid charge distributions DV for a given SiDB layout
L can now be computed: first the ground state space S = {(L,M)}
for some top cluster charge space M ∈Mn({−,0,+}) is constructed
using Algorithm 1, after which it is destructed into DV through DV ←⋃

m∈M EXTRACTMETASTABLECHARGEDISTRIBUTIONS({(L,m)}).

V. EXPERIMENTAL EVALUATIONS

This section presents the results of an experimental evaluation of
the methodology that was proposed in Section IV. First, Section V-A
discusses the applied setup. Afterwards, two sets of results for differ-
ent experiments are presented: 1) an experiment in Section V-B that
quantifies the exponential base reduction when adopting the proposed
methodology, and 2) an experiment in Section V-C that demonstrates
the successful simulation of benchmark SiDB circuits from the literature.
These layouts were previously far beyond the boundary of computational
tractability for exact simulation; thus, the proposed work shifts this
boundary from single-gates to full circuits—a crucial step in advancing
SiDB technology.

A. Experimental Setup
The proposed methodology discussed in Section IV has been imple-

mented in C++17 under the name ClusterComplete, and is built on top
of the fiction [30] framework, which is part of the Munich Nanotech
Toolkit (MNT).9 The first experiment, which analytically investigates
time complexity in the application to logic implementations on the
SiDB platform, is structured as follows: a homogeneous chain of gates
is incrementally extended, from a single gate up to a final chain of
seven gates connected in series. For each chain length, an exact physical
simulation of the layout is performed. This approach analyzes how
runtime changes with the length of the chain, revealing how the runtime
depends on the number of SiDBs in the layout and enabling extraction
of the exponential base. This process is repeated for implementations
of all 10 true 2-input Boolean functions plus wires and inverters. For
the second experiment, SiDB circuits from the literature [9] comprising
6–7 gates are simulated using ClusterComplete. To enable a comparative
perspective, the extrapolation results from the first experiment are applied
to project runtimes of the state-of-the-art exact simulator QuickExact.

All evaluations were run on an Ubuntu 20.04 system equipped with an
AMD Ryzen Threadripper PRO 5955WX processor (16 processor cores
@ 4.00GHz to 4.50GHz) and 128GB DDR4 RAM.

B. Extrapolation Base a in an for Exact SiDB Logic Simulations
All results of the first experiment are summarized in Table I. Two

rows are displayed for each exact simulation algorithm that was tested,

9ClusterComplete is publicly available at https://github.com/cda-tum/fiction

TABLE I: Base a in an: ClusterComplete (CC) vs. SOTA (QE).
SCALING RESULTS EXTRAPOLATED FROM HOMOGENEOUS CHAINS OF SIDB GATES MEAN

WIRE INV AND OR NAND NOR XOR XNOR LT LE GT GE

QE BASE 1.705 1.822 1.941 1.949 2.333 2.327 1.935 2.323 1.867 1.898 1.943 1.876 1.993
σ 0.158 0.155 0.044 0.041 0.330 0.334 0.047 0.339 0.090 0.074 0.044 0.085 0.141

CC BASE 1.276 1.296 1.326 1.318 1.310 1.317 1.335 1.361 1.332 1.285 1.354 1.297 1.317
σ 0.013 0.002 0.000 0.002 0.002 0.003 0.002 0.002 0.004 0.003 0.001 0.007 0.003

TABLE II: Exact simulation of SiDB circuits using ClusterComplete.

BENCHMARK [9] PHYSICAL SIMULATION RUNTIMES

Name #SiDBs QuickExact [22] (extrapolated) ClusterComplete

[31] xor5 majority 70 ≈ 2 million years 886 s
xor5 r1 70 ≈ 2 million years 1985 s

[32] HA 74 ≈ 31 million years 5833 s
mux21 76 ≈ 127 million years 8434 s

providing the extrapolated base a in the exponential an—where n is
the number of SiDBs—that was obtained through a linear regression on
a log-scale. While up to seven gates were used to extrapolate the base
for ClusterComplete, it was not feasible to simulate chains of more than
three gates with QuickExact. As a result, the base extrapolation for the
latter suffers from a higher standard error σ.

This experiment clearly demonstrates that the exponential base remains
below 1.4 in all evaluated cases when using ClusterComplete, with some
achieving a base as low as 1.276 and 1.285 in the case of the chain of
WIRE gates and LE gates respectively—all whilst boasting a minuscule
standard error. Meanwhile, the state of the art was only able to determine
the absence of positive charges for these BDL gate implementations, thus
yielding a scaling of 2n.

The observed exponential base reduction—going from 2n in state-
of-the-art methods to around 1.3n—represents a significant decrease
in computational complexity. The groundbreaking approach masters the
exponential nature of exact physical simulation of SiDBs and sets a new
standard for computational feasibility in the SiDB technology.

C. SiDB Circuit Simulation
To show the significant impact of the reduced exponential base of the

proposed methodology as quantified previously, the second experiment—
outlined above in Section V-A—focuses on the simulation of realistic
SiDB circuits from the literature. The simulation runtimes are summa-
rized in Table II, where also approximated runtimes for QuickExact
are provided through extrapolation using the data from the previous
experiment.

Given the magnitudinal difference between the runtimes of the respec-
tive exact simulators for such larger problems, the benefit of the proposed
methodology is obvious. This demonstrates its breakthrough power,
overcoming the long-standing stagnation at single-gate simulation, and
enabling the exact simulation of full circuits.

VI. CONCLUSION

As the field of Silicon Dangling Bond (SiDB) logic continues to ad-
vance, garnering increased attention as a promising beyond-CMOS tech-
nology, physical simulation remains a critical bottleneck—particularly
for exact simulation. The exponential growth of the search space,
scaling with base 3, has confined the application of exact physical
simulation to single-gate designs, stalling progress toward larger, more
complex layouts. To address this limitation, this work introduces a novel
methodology that restructures the exponential search space according to
a hierarchical clustering. The hierarchy structure enables a systematic
pruning of the search space at its different levels, exploiting dynamically-
inferred problem-specific constraints to reduce the effective exponential
base from 3 to approximately 1.3.

The methodology achieves, for the first time, the exact physical
simulation of multi-gate SiDB circuits. Experimental results using the
proposed exact simulator ClusterComplete demonstrate its capability to
handle complex layouts in minutes that would otherwise take the state
of the art millions of years to simulate. Establishing a robust ground
truth for the physical simulation of SiDB logic underscores the profound
impact of search space pruning in a cluster hierarchy on overcoming the
barrier imposed by the base 3 exponential complexity. This breakthrough
paves the way for scalable, energy-efficient, and atomic-scale computing.
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