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Abstract. Following the reversible computation paradigm is essential in

the design of many emerging technologies such as quantum computation

or dedicated low power concepts. The design of corresponding circuits

and systems heavily relies on information about whether the function

to be realized is indeed reversible. In particular in hierarchical synthesis

approaches where a given function is decomposed into sub-functions, this

is often not obvious. In this paper, we prove that checking reversibility

of Boolean functions is indeed coNP-complete. Besides that, we propose

two complementary approaches which, despite the complexity, can tackle

this problem in an efficient fashion. An experimental evaluation shows

the feasibility of the approaches.

1 Introduction

Reversible circuits realize an alternative computation paradigm which, in con-

trast to conventional circuits, employs n-input n-output functions that map each

possible input vector to a unique output vector. In other words, bijections are

realized. This provides an essential characteristic for many emerging technologies

such as

– quantum computation [15], which allows for solving many practical relevant

problems (e.g. factorization [18] or database search [11]) exponentially faster

and relies on quantum operations that are inherently reversible or

– certain aspects in low-power design motivated by the fact that reversible

computation is information loss-less and, hence, the absence of information

loss (at least theoretically) helps avoiding energy dissipation during compu-

tations1.

Besides that, superconducting quantum interference devices [16], nanoelectrome-

chanical systems [12, 13], adiabatic circuits [2], and many further technologies

utilize this computation paradigm. Even for conventional design tasks, useful

1 Initial experiments verifying the underlying link between information-loss and ther-

modynamics have been reported in [3].



applications have been proposed recently, e.g. for the design of efficient on-chip

interconnect codings [28].

Because of this steadily increasing interest, also the design of reversible cir-

cuits and systems is gaining interest. Here, the inherent reversibility constitutes

a major obstacle. In order to not violate the paradigm, each reversible function

has to be realized by a sequence or cascade of (atomic) reversible operations

or gates, respectively. To this end, established gate libraries (see e.g. [24]) or

assembly-like software instructions (see e.g. [23]) have been introduced in the

past. But how to realize (complex) reversible functionality in terms of these

atomic operations remains a major problem.

To this end, complementary approaches have been introduced in the past.

One set of solutions requires a fully reversible function as input (e.g. [10, 14,17,

20]). As frequently also irreversible functionality is to be realized, a pre-synthesis

process called embedding is conducted before (see e.g. [21,27]). As an alternative,

hierarchical solutions e.g. based on decision diagrams or two-level representations

have been proposed e.g. in [25] or [8], respectively. Here, large functionality

is decomposed into smaller sub-functions from which the respectively desired

atomic representations can be derived.

However, both directions suffer from the fact that it is often not known

whether the respectively considered (sub-)function is indeed reversible. In fact,

this causes that approaches such as proposed e.g. in [10, 14, 17, 20] are usually

applicable to rather small functions only, while solutions e.g. proposed in [8,25]

yield designs of very large costs (this is discussed in more detail later in Sec-

tion 3). As a consequence, the non-availability of solutions for efficiently checking

the reversibility of a given function constitutes a major obstacle in the design of

reversible circuit and systems2.

In this work, we are addressing this problem. We first consider the underly-

ing problem from a theoretical perspective showing that checking reversibility

for a given function is coNP-complete. Afterwards, we provide efficient solutions

which tackle this problem despite the proven complexity. More precisely, two

complementary approaches are proposed: one utilizing the efficient function ma-

nipulation capabilities provided by decision diagrams and another which exploits

the deductive power of solving engines for Boolean satisfiability.

In an experimental evaluation we demonstrate the applicability of the pro-

posed approaches. While both complementary strategies can efficiently handle

the problem, also differences between them are unveiled. Overall, the solution

based on satisfiability solvers is capable of checking the reversibility of functions

in negligible run-time even for some of the largest function considered in the

design of reversible circuits and systems thus far.

2 Note that this problem has been recognized in other works concerning embedding

(e.g. [21]) and synthesis (e.g. [19]). But, thus far, the issue has only been addressed

peripherally and without a theoretical consideration, explicit algorithms, or an ex-

perimental evaluation.



The remainder of this work is structured as follows: The next section provides

preliminaries, i.e. definitions of the different function representations utilized in

this work. Section 3 discusses the importance of checking for reversibility and,

hence, provides the motivation of this work. Afterwards, the complexity of the

considered problem is considered in Section 4 before the two complementary

approaches are introduced in Section 5 and Section 6. Results of the experimental

evaluation are summarized in Section 7. Section 8 concludes this paper.

2 Preliminaries

Logic computations can be defined as functions over Boolean variables. More

precisely:

Definition 1. A Boolean function is a mapping f : Bn → B with n ∈ N. A func-

tion f is defined over its primary input variables X = {x1, x2, . . . , xn} and,

hence, is also denoted by f(x1, x2, . . . , xn). The concrete mapping may be de-

scribed in terms of Boolean algebra with expressions formed over the variables

from X and operations like ∧ ( AND), ∨ ( OR), or · ( NOT).

A multi-output Boolean function is a mapping f : Bn → Bm with n,m ∈ N.

More precisely, it is a system of Boolean functions fi(x1, x2, . . . , xn). The re-

spective functions fi (1 ≤ i ≤ m) are also denoted as primary outputs.

The set of all Boolean functions with n inputs and m outputs is denoted

by Bn,m = {f | f : Bn → Bm}.

In this work, we consider the design of circuits and systems realizing reversible

functions. Reversible functions are a subset of multi-output functions and are

defined as follows:

Definition 2. A multi-output function f : Bn → Bm is reversible iff f is a

bijection.

In other words, its number of inputs is equal to the number of outputs, i.e.

f ∈ Bn,n, and it performs a permutation of the set of input patterns. A function

that is not reversible is termed irreversible.

Besides the representation in Boolean algebra, (reversible) functions can also

be represented in terms of set relations.

Definition 3. A function f : Bn → Bm is by definition a relation F ⊂ Bn×Bm
of all possible input patterns to the set of possible output patterns. For a reversible

function, this relation additionally inherits the property that each input pattern is

related to exactly one output pattern, i.e. ∀y ∈ Bm : |{x ∈ Bn | (x, y) ∈ F}| = 1.

The composition of two set relations F and G (i.e. two functions f and g) is

defined by (G ◦ F ) ⊂ Bn × Bk so that

G ◦ F = {(x, y) | ∃z ∈ Bm : (x, z) ∈ F ∧ (z, y) ∈ G}.



Finally, the input/output mapping of a (reversible) function can also be rep-

resented in terms of a characteristic function.

Definition 4. The characteristic function for a Boolean relation F is defined

as χF : Bn × Bm → B where χF (x, y) = 1 if and only if (x, y) ∈ F .

3 Motivation

Although never explicitly considered thus far, knowing whether a given func-

tion is reversible is an important information in the design of reversible circuits

and systems. This section briefly reviews the current state-of-the-art synthe-

sis approaches and discusses why the non-availability of corresponding checking

methods constitutes a major obstacle in the development of design methods for

reversible circuits and systems.

3.1 Obstacles to the Embedding Process

Not surprisingly, many design methods for reversible circuits (e.g. those pro-

posed in [10,14,17,20]) require a fully reversible function as input. As frequently

also irreversible functionality is to be realized in reversible logic, a pre-synthesis

process called embedding is conducted before (see e.g. [21, 27]).

To this end, additional outputs (so-called garbage outputs) are added to the

considered function f ∈ Bn,m. More precisely, dlog2(µ(f))e additional outputs

are required, whereby µ is the maximal number of times an output pattern is

generated by f , i.e. µ(f) = maxy∈Bm(|{x | y = f(x)}|). In order to keep the

number of inputs and outputs equal, this may also result in the addition of

further inputs. That is, an irreversible function f : Bn → Bm is embedded into

a function f ′ : Bm+dlog2(µ)e → Bm+dlog2(µ)e. While f ′ is to be specified in a fully

reversible fashion, the desired target functionality can be employed by setting

the additionally added inputs to a constant value and recognizing only the non-

garbage outputs. An example illustrates the idea.

Example 1. Consider the Boolean function f : B2 → B1 with f(x1, x2) = x1∧x2
to be synthesized as a reversible circuit. Obviously, f is irreversible. The maximal

number of times an output pattern is generated by f is µ(f) = 3 (namely 0 for

the input patterns 00, 01, and 10). Hence, in order to realize f using a synthesis

approach as e.g. proposed in [10, 14, 17, 20], this function has to be embedded

into a function f ′ : B2+1 → B1+2 with dlog2(3)e = 2 additional outputs and

1+dlog2(3)e−2 = 1 additional input. The resulting function f ′can be specified as

– f ′1(x1, x2, x3) = x1
– f ′2(x1, x2, x3) = x2
– f ′3(x1, x2, x3) = (x1 ∧ x2)⊕ x3.



This function is reversible (as can be checked by applying all 23 = 8 possible

input assignments) and realizes the target functionality f by setting x3 to a

constant zero value, i.e. f = x1 ∧ x2 = (x1 ∧ x2)⊕ 0 = f ′3(x1, x2, 0).

However, generating an embedding as sketched above is an exponentially

complex tasks: In order to determine µ, all 2n output patterns generated by

the inputs have to be inspected. Previous work tried to avoid this complexity

by not aiming for a minimal result with respect to the number of additionally

required outputs, but a heuristic one: In fact, since µ can never exceed 2n, at most

dlog2(2n)e = n additional garbage outputs are required [27], i.e. any irreversible

function can be embedded into a function f ′ : Bn+m → Bm+n. But also here, the

question remains how to specify the functionality of the newly added garbage

outputs. Although heuristics assigning the additional outputs with a dedicated

functionality as e.g. done in Example 1 are very promising, no solutions are

available yet which guarantee that the resulting function f ′ is indeed reversible.

As a consequence those heuristics did not become established and, hence, the

design methods from [10,14,17, 20] mostly remain applicable to small functions

only.

3.2 Obstacles to the Synthesis Process

In order to overcome the problems sketched above, researchers considered alter-

native synthesis schemes (see e.g. [8,25]) relying on conventional decomposition

methods (e.g. according to Shannon). Here, a given function f is decomposed

with respect to an input variable xi into two sub-functions fxi=0 and fxi=1

such that f = (xi ∧ fxi=0) ∨ (xi ∧ fxi=1) holds. The sub-functions are called co-

factors of f and are obtained by assigning xi to 0 and 1, respectively. The re-

sulting co-factors are further decomposed until sub-functions result for which a

building block is available. Plugging the resulting building blocks together even-

tually yields a circuit realizing the desired function. Because of this, no explicit

embedding scheme is required, but the function is implicitly embedded.

In these approaches, information about the reversibility of the respectively

considered (sub-)functions is essential to the quality of the resulting circuits.

In fact, the decomposition almost always yields sub-functions which are not re-

versible anymore (even if the originally given function is). Hence, again garbage

outputs and constant inputs are required in order to derive building blocks for

them. Since this is conducted for each single sub-function (out of which a sig-

nificant amount exists for a originally given function to be synthesized), this

eventually leads to a significant amount of additional circuitry which is far be-

yond upper bounds (as evaluated by a corresponding study in [27]).

Being able to check whether a (sub-)function is reversible may offer the

prospect of performing a decomposition such that not two arbitrary Boolean

functions, but two reversible Boolean functions result. Since they can be real-

ized with no additionally required outputs, significantly more compact circuits

may be derived from that.



Either way, the non-availability of methods for checking the reversibility of

a given function poses a major obstacle to the design of reversible circuits and

systems. It prevents the application of (heuristic) embedding methods allow-

ing to efficiently synthesize the desired function with dedicated approaches and

it prevents the alternative, namely approaches based on decomposition, from

generating compact circuits.

4 Theoretical Consideration

The previous section discussed why checking the reversibility of Boolean func-

tions is of high importance. Now, we are considering the complexity of this

problem. More precisely, the following decision problem is considered:

Definition 5. Let f ∈ Bn,n be a Boolean function with n inputs and n outputs3.

Moreover, let Revn denote the set of all reversible functions with n inputs and

n outputs, i.e. Revn = {g ∈ Bn,n | g is reversible}. Then, REV is the decision

problem asking whether f ∈ Revn.

Note that the means of representing f is essential. For example, if f is given as

a truth table, the check can be performed in linear time on the exponential input

representation. In the following, we will consider the complexity with respect to

the number of inputs/outputs. For this, we will prove the following:

Proposition 1. REV is coNP-hard.

The complexity of REV is shown by a reduction from the embedding problem

which has been investigated in [21]. Using the notation of [21], let f ∈ Bn,m, let

µ(f) = max{|f−1({y})| | y ∈ Bm} denote the number of occurrences of the most

frequent output pattern, and let l(f) = dlog2µ(f)e denote the minimal number

of additional variables required to embed f . Then, it was shown that:

Lemma 1 (Proposition 4.3 in [21]). For each fixed l ≥ 0, it is coNP-hard to

decide for a given f ∈ Bn,m whether l(f) = l.

In order to apply this in our context, we have to consider the case l = 0 for

m = n. Then, we immediately obtain the following:

Corollary 1. Let f ∈ Bn,n (n ≥ 1). It is coNP-hard to decide whether l(f) = 0.

Proof. (adapted from [21]) The basic idea to proof this corollary is to provide

a polynomial time many-one reduction from the validity problem for proposi-

tional formulas. This problem asks whether a propositional formula is a tau-

tology and itself is known to be coNP-complete [6]. To this end, for a fixed

3 Since functions f : Bn → Bm with n 6= m are not reversible by definition, we are

assuming an equal number n of inputs and outputs in the following.



propositional formula φ over the variables {x1, . . . , xn}, we compute the func-

tion f = (f1, . . . , fn) ∈ Bn,n by defining the component functions fi by means

of the propositional formulas

fi(x1, . . . , xn) := xi ∧ φ(x1, . . . , xn) ∧ φ(0, . . . , 0).

Clearly, this computation can be performed in polynomial time. Now, as we have

the equivalence

l(f) = 0 ⇐⇒ dlog2µ(f)e = 0

⇐⇒ max{|f−1({y})| | y ∈ Bn} = 1

⇐⇒ f is injective,

it remains to show that the original formula φ is valid if and only if f is injective.

Now, if φ is valid, we have fi = xi and f turns out to be the identity function

on Bn which is indeed injective. On the other hand, if φ is not valid there is an

assignment x̃ = {x̃1, . . . , x̃n} such that φ(x̃) = 0. For the case x̃ = {0, . . . , 0},
all fi are contradictions by construction and f always evaluates to 0n. For the

other case, x̃ 6= {0, . . . , 0}, we obtain f(x̃) = 0n = f(0, . . . , 0). In both cases, f

is not injective which proves the corollary. ut

As we have seen in the proof, l(f) = 0 is equivalent to the injectivity of f .

Moreover, as f has the same (finite) domain and codomain Bn, injectivity is

equivalent to bijectivity and, thus, reversibility. Consequently, we obtain the

following corollary from which Proposition 1 can be implied immediately:

Corollary 2. Let f ∈ Bn,n(n ≥ 1). It is coNP-hard to decide whether f ∈ Revn.

Note that, in order to show coNP-completeness, a counterexample for re-

versibility is only polynomially sized (two inputs that provide the same output)

and can also be checked in polynomial time (by evaluating the function for the

two inputs). This inheritance in coNP together with the coNP-hardness proves,

in fact, the coNP-completeness of REV.

Knowing the complexity of the considered problem, in the remainder of this

work, we focus on how to solve it as efficient as possible. To this end, two

complementary approaches are introduced and discussed.

5 Checking for Reversibility Using Decision Diagrams

Graph-based representation and manipulation of (Boolean) functions became

very popular in computer-aided design after the initial work on Binary Deci-

sion Diagrams (BDDs) by Bryant [5]. Graph-based representations of Boolean

functions have – besides others – two major advantages: (1) they describe the

entire function in a compact manner and (2) they allow for efficiently applying

logical manipulations (e.g. computing f ∧ g). Accordingly, they can be utilized

for the problem considered in this work. In this section, a corresponding solution

based on BDDs is introduced. To this end, we first sketch the general idea before

details about the implementation are provided.



5.1 General Idea

While BDDs allow for an efficient representation of Boolean functions, the char-

acteristic of reversibility cannot directly be derived from them. Consequently,

our aim is to use the various possibilities for (efficient) function manipulation

in order to transform a given function f ∈ Bn,n in such a way that its (non)-

reversibility becomes clearly evident.

To this end, we exploit the fact that the composition of a reversible func-

tion with its inverse yields the identity function. Hence, the general idea of the

proposed approach is to

1. determine the inverse function f−1 and, afterwards,
2. check whether the composition of f and f−1 is equivalent to the identity

mapping, i.e.

f−1 ◦ f = idBn .

If the check for identity holds, the considered function is reversible. Other-

wise, it can be concluded that the considered function is not reversible.

However, while checking equivalence of two functions using their BDD rep-

resentation is straight-forward, there are two main issues of this procedure that

are non-trivial:

(1) how to create the inverse of f (especially: what if f is irreversible?) and
(2) how to perform the composition?

These issues will be addressed in the following.

5.2 Generating the Inverse Function

Unfortunately, an inverse function can only be constructed if the original func-

tion is reversible. To overcome this and to develop a procedure that can also be

applied to irreversible functions, we consider the graph of the function, i.e. the

underlying set relation, and perform the reversibility check at the level of rela-

tions (cf. Definition 3 from Section 2). Here, an inverse can easily be created by

swapping the first and the second component of each pair.

Example 2. Consider the function f ∈ B2,2 shown in Fig. 1(a). The correspond-

ing set relation F ⊂ B2 × B2 is shown in Fig. 1(b) in terms of a complete list

of related pairs. The inverse relation F−1 which is obtained by swapping the

first and second component of each pair is shown in Fig. 1(c). Apparently, the

composition F−1 ◦F (as shown in Fig. 1(d)) is clearly different from the identity

relation (as shown in Fig. 1(e)), since the pattern 10 is not only related to itself,

but also to 11. Consequently, f is not reversible.

However, set relations are – in contrast to BDDs – not a very efficient rep-

resentation of a function. But the same concept can similarly be applied to

characteristic functions (cf. Definition 4 from Section 2) and, hence function

representations for which BDDs are applicable.



x1 x2 f1 f2
0 0 0 1

0 1 1 0

1 0 1 1

1 1 1 1

(a) f

(00, 01)

(01, 10)

(10, 11)

(11, 11)

(b) F

(01, 00)

(10, 01)

(11, 10)

(11, 11)

(c) F−1

(00, 00)

(01, 01)

(10, 10)

(10, 11)

(11, 10)

(11, 11)

(d) F−1 ◦ F

(00, 00)

(01, 01)

(10, 10)

(11, 11)

(e) id

Fig. 1. Set relations of Boolean functions
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Fig. 2. Matrix representations of characteristic functions.

Example 3. The characteristic function of a relation F , χF can be represented

by a matrix MF with entries mij = χF (i, j), i.e. the columns denote the possible

input patterns and the rows denote the possible output patterns. Thus, a matrix

entry is 1 if and only if the corresponding input pattern is related to the cor-

responding output pattern. The corresponding matrices for the relations from

Figs. 1(b) and 1(c) are shown in Figs. 2(a) and 2(b), respectively. Note that the

matrix for the inverse relation can be obtained by transposing the matrix MF ,

i.e. MF−1 = MT
F .

Now, given χF , the representation for χF−1 can be obtained from the one for

χF by simply swapping input and output variables and re-labelling the corre-

sponding nodes. However, a multi-output Boolean function f = (f1, . . . , fn)

is usually not given in terms of its characteristic function, but rather by a

set (forest) of individual BDDs describing the component functions. Conse-

quently, we have to compute χF as a pre-processing step in the first place.

This is done by first computing the characteristic functions for the components

χFi
= fi�yi (where � denotes the XNOR-operation) and then combining these

to χF = χF1
∧ . . . ∧ χFn

.

5.3 Computing the Composition

Given the characteristic functions, χF and χF−1 , we have to compute χF−1◦F .

In order to conduct this, we recall that the corresponding set relation is given



by F−1 ◦ F = {(x, y) | ∃z : (x, z) ∈ F ∧ (z, y) ∈ F−1}. Returning to the level of

characteristic functions, this translates to

χF−1◦F (x, y) = ∃z : χF (x, z) ∧ χF−1(z, y)

In order to construct this function, we use an (established) logic operation

called existential quantification.

Definition 6. Given f ∈ Bn,m over variables x1, . . . , xn, we define the (Boolean)

function (∃xi : f) ∈ Bn−1,m by (∃xi : f) := fxi=0∨fxi=1, where fxi=0 and fxi=1

denote the co-factors of f restricted to the respective value of xi. That means

(∃xi : f) evaluates to true for an input assignment (x1, . . . , xi−1, xi+1, . . . , xn)

if and only if xi can be chosen such that f(x1, . . . , xi−1, xi, xi+1, . . . , xn) = 1.

This operation can be employed for our purpose of composing χF and χF−1

as follows: we define a (Boolean) helper function

H(x, y, z) = χF (x, z) ∧ χF−1(z, y)

and can then obtain χF−1◦F by existentially quantifying z:

χF−1◦F = (∃z : H).

After this, the characteristic function for the identity function idBn has to be

created. This can easily be done by constructing a BDD representing the function

χid = x1�y1 ∧ . . . ∧ xn�yn (again, note that � denotes the XNOR-operation).

This states that χid(x, y) = 1 if and only if x = y.

Finally, the resulting BDD representing χF−1◦F and the BDD represent-

ing χid have to be checked for equivalence. After constructing both BDDs this

test can be performed in constant time. If both are equivalent, the considered

function f is reversible. Otherwise, it has been shown that f is irreversible.

Another way to employ existential quantification for checking reversibility,

as sketched in [19], is to quantify over all input variables of the characteristic

function, i.e. to compute ∃x : χF , which yields the disjunction of all output

patterns. The resulting function is a tautology if and only if f is surjective/re-

versible. However, as existential quantification is the most expensive BDD op-

eration used in the proposed flow, this alternative approach will not perform

significantly different.

6 Checking for Reversibility Using Satisfiability Solvers

As an alternative to the BDD-based approach, we additionally propose a comple-

mentary solution to the problem considered in this work which is based on search

methods. More precisely, solvers for the Boolean satisfiability problem (SAT prob-

lem) are utilized. In this section, we again sketch the general idea first before

details on the implementation are provided.



6.1 General Idea

The SAT problem itself is simple to describe: For a given Boolean formula Φ,

the SAT problem is about determining an assignment α to the variables of Φ

such that Φ(α) evaluates to true or to prove that no such assignment exists.

In the past years, tremendous improvements have been achieved in the de-

velopment of corresponding solving engines (so-called SAT solvers). Instead of

simply traversing the complete space of assignments, powerful techniques such

as intelligent decision heuristics, conflict based learning schemes, and efficient

implication methods e.g. through Boolean Constraint Propagation (BCP) are

applied (see e.g. [7,9]). These techniques led to effective search procedures which

can handle instances composed of thousands of variables and constraints. Fur-

thermore, the SAT problem has been proven to be NP-complete [6], i.e. every

problem in NP can be reduced in polynomial time to the SAT problem.

However, checking whether a given Boolean function is reversible does not

obviously look like a satisfiability problem at a first glance: A certain property

(namely unique output patterns) has to be checked for all possible input pat-

terns. But this problem can easily be reformulated to a SAT problem: Instead of

checking the uniqueness of all output patterns, we can negate the problem for-

mulation and ask whether two input patterns exist which yield the same output

pattern. This is a classical satisfiability problem.

Note that, by using this formulation, we are not considering the REV -

problem (cf. Definition 5 in Section 4) anymore, but its negation (denoted by

NOTREV in the following). Since REV is in coNP, the complementary prob-

lem NOTREV is in NP and, hence, can be solved as a SAT problem4. More

formally, the following problem is left to be solved: Let f ∈ Bn,n. Then, the SAT

solver is asked for two patterns x, y, x 6= y such that f(x) = f(y) holds.

6.2 Implementation

In order to implement the proposed idea, the question “Do two input assign-

ments x, y ∈ Bn exist so that f(x) = f(y)?” has to be formulated in terms of a

SAT instance Φ which can be handled by corresponding solvers. Often, satisfia-

bility solvers require the respectively given function Φ for which an assignment

has to be determined in Conjunctive Normal Form, in bit-vector logic, or similar.

In order to generate this formulation, the following steps have to be performed:

– Introduce (SAT-)variables which symbolically represent all possible assign-

ments: A symbolic formulation for all possible assignments that have to

4 A similar idea has been employed for equivalence checking in the domain of verifi-

cation (see e.g. [1, 4]). In our context, instead of two different functions, the same

function is considered twice and, instead of applying the same pattern on both func-

tions, we apply different patterns.



f = (a ∧ b) ⊕ c

Φ1 x6 x1 x4 x2 x5 x3
Φ2 y6 y1 y4 y2 y5 y3

(a) Variables

Φ1 = ((x4 = (x1 ∧ x2)) ∧ (x5 = (x4 ⊕ x3)) ∧ (x6 = x5))

Φ2 = ((y4 = (y1 ∧ y2)) ∧ (y5 = (y4 ⊕ y3)) ∧ (y6 = y5))

(b) Constraints

Φobj = ((x1 6= y1) ∨ (x2 6= y2) ∨ (x3 6= x3)) ∧ (x6 = y6)

(c) Objective

Fig. 3. SAT formulation

be checked has to be created. In the problem considered here, this is ac-

complished by introducing a new free (Boolean) variable for each primary

input, primary output, and internal signal of the considered function f . Since

two different assignments are to be determined, all these variables have to

be created twice (in the following distinguished between x-variables and y-

variables). Fig. 3(a) exemplary provides the respectively needed variables for

checking the function f = (a ∧ b)⊕ c.
– Introduce constraints in order to allow for valid solutions only: Obviously,

just passing the newly created variables to a solving engine does not lead

to any useful result – without further constraints, the solver would just

generate arbitrary assignments. Hence, in another step, constraints must be

added which restrict the solving engine to determining valid solutions only. In

the scenario considered here, this particularly includes constraints ensuring

a valid input-output mapping of the considered function, i.e. depending on

the representation of f , the internal signals and, by this, the primary outputs

are restricted. This has to be done for both “copies” eventually leading to

a sub-instance Φ1 and a sub-instance Φ2. This is illustrated in Fig. 3(b) for

the function from above.

– Employ the objective: With the formulation thus far, a symbolic representa-

tion of the evaluation of the given function f for two arbitrary assignments

is available. Finally, constraints have to be employed which enforce the con-

sidered objective. For the problem considered here, this includes constraints

enforcing that both inputs are not equal, while their primary outputs must

be equal (leading to a sub-instance Φobj). This is illustrated in Fig. 3(c) for

the function from above.

Passing the conjunction of all sub-instances, i.e. Φ = Φ1 ∧ Φ2 ∧ Φobj , to a

SAT solver, a satisfying assignment of the SAT variables is derived if indeed two

input assignments exist for which f yields the same output. Then, these input

assignments can be obtained from the solution determined by the SAT solver



and serve as a witness for the non-reversibility. If in contrast the SAT solver

proved that no satisfying assignment for the considered instance exists, it can

be concluded that the function is reversible.

7 Experimental Evaluation

The approaches presented above provide non-trivial solutions to the coNP-

complete problem of checking whether a given Boolean function is reversible.

In order to evaluate how they eventually cope with the underlying complex-

ity (as discussed in Section 4), both approaches have been implemented and

throughly evaluated. In this section, we summarize and discuss the results of

these evaluations.

7.1 Setup

The BDD-based approach from Section 5 and the SAT-based approach from

Section 6 have been implemented in C/C++. To this end, CUDD [22] and Min-

iSAT [7] have been utilized as existing libraries for BDD construction and sat-

isfiability solvers, respectively.

As benchmarks we considered functions from RevLib [26] and the well-known

LG-Synth package. Since most of the functions are not reversible (particularly

for large functions; see also the discussion of the obstacles for the design of these

functions in Section 3), some irreversible functions have been made reversible

using the implicit embedding from the BDD-based synthesis as proposed in [25].

More precisely, the originally given (irreversible) functions have been synthesized

and, afterwards, functional descriptions have been derived from the resulting

circuits using a restricted set of input/output mappings (ignoring constant inputs

and garbage outputs). This way, a variety of reversible as well as irreversible

functions of different sizes became available for evaluation.

Finally, all resulting functions have been processed with the implemented

solutions. All experiments have been conducted on a 3 GHz Dual Opteron 2222

with 32 GB of main memory.

7.2 Results and Discussion

A selection of the obtained results are summarized in Table 1. The first columns

provide the name of the respectively considered benchmarks (Benchmark), its

number of inputs/outputs (n), as well as the desired information of whether it

is reversible or not (denoted by 3and 7, respectively, in column REV? ). After-

wards, the results obtained by the proposed approaches are summarized. Since

both always provided the correct result on whether the function is reversible,

only performance values are listed: For the BDD-based approach, the maximum

number of nodes required to represent the (characteristic) function (Nodes) is



Table 1. Experimental evaluation

BDD-based SAT-based

Benchmark n REV? Nodes Time (s) Vars Clses Time (s)

9sym 27 3 16304 0.51 9731 8269 <0.01

9sym 9 7 961 <0.01 353 545 <0.01

cordic 52 3 31948 2.23 27601 20993 0.08

cordic 23 7 2849 <0.01 879 1281 <0.01

revsyn 9sym 27 3 233020 12.97 1929 1931 <0.01

revsyn cordic 52 3 > 108 >3600 1941 1573 <0.01

revsyn xor5 6 3 214 <0.01 161 109 <0.01

xor5 6 3 178 <0.01 161 109 <0.01

xor5 5 7 214 <0.01 123 185 <0.01

add64 184 193 3 12606 0.53 7403 11171 0.02

add64 184 129 7 > 108 >3600 4693 6743 0.01

bw 87 3 > 108 >3600 13345 9417 0.03

bw 28 7 12480 16.23 3143 3493 <0.01

dk17 224 21 3 7544 0.08 1449 2077 <0.01

in0 235 26 3 26246 1.15 6427 10019 <0.01

in0 235 15 7 361 <0.01 299 271 <0.01

given, while, for the SAT-based approach, the number of variables (Vars) and

clauses (Clses) required to formulate the corresponding satisfiability problem is

given. For both approaches additionally the required run-time (Time, in CPU

seconds) is provided.

The results clearly show that both approaches are successful in efficiently

solving the considered problem. Considering the coNP-hardness of the task,

functions composed of more than 100 variables (constituting one of the largest

functions currently considered in the design of reversible circuits and systems)

can be handled quite efficiently.

Comparing both (complementary) solutions against each other, it is obvious

that the SAT-based approach performs significantly better than the BDD-based

approach. This can be explained by the “memory explosion” of the BDD repre-

sentation. In fact, BDDs are known for their efficient representation of Boolean

functions, but eventually require exponential space in the worst case. In the sce-

nario considered here, this worst case is often approached because characteristic

functions are considered. Building these often requires the BDD package to fold

up the entire functionality before reductions e.g. due to sharing can be exploited.

This obviously harms the efficiency of the approach.

In contrast, the SAT-based approach can handle the respective search space

in a more efficient fashion. Even for larger functions, always negligible run-time



is required. Hence, the SAT-based solution clearly constitutes itself as a very

efficient solution for checking the reversibility of a given function.

8 Conclusions

In this work, we considered how to check whether a given function is reversible.

Although never explicitly considered thus far, the absence of corresponding so-

lutions constitutes a major obstacle in the design of reversible circuits and sys-

tems. We proved that the underlying problem is coNP-complete and proposed

two complementary approaches addressing it – one based on decision diagrams

and another exploiting satisfiability solvers. The experimental evaluation showed

that, despite the complexity, both solutions can handle the problem. In fact, the

SAT-based solution is even capable of solving the task in negligible run-time even

for some of the largest functions considered in the design of reversible circuits

and systems thus far.
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