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Abstract. Recent accomplishments in the development of quantum cir-
cuits motivated research in Computer-Aided Design for quantum cir-
cuits. Here, how to consider physical constraints in general and so-called
nearest neighbor constraints in particular is an objective of recent de-
velopments. Re-ordering the given qubits in a circuit provides thereby a
common strategy in order to reduce the corresponding costs. But since
this leads to a signi�cant complexity, existing solutions either worked
towards a single order only (and, hence, exclude better options) or su�er
from high runtimes when considering all possible options. In this work,
we provide an alternative which utilizes so-called πDDs for this purpose.
They allow for the e�cient representation and manipulation of sets of
permutations and, hence, provide the ideal data-structure for the consid-
ered problem. Experimental evaluations con�rm that, by utilizing πDDs,
optimal or almost optimal results can be generated in a fraction of the
time needed by exact solutions.

1 Introduction

Quantum computation [1] exploits quantum mechanical phenomena such as su-
perposition, entanglement, etc. and utilizes qubits rather than conventional bits
for computation. This allows for solving many practically relevant problems
much faster than with conventional circuits. Prominent examples include prob-
lems such as factorization (for which Shor's algorithm [2] has been proposed)
or database search (for which Groover's iteration [3] has been proposed). While
�rst corresponding quantum circuits have been developed by hand, the design of
more complex quantum functionality will require automatic methods � motivat-
ing the research in Computer-Aided Design (CAD) for quantum circuits. Since
each quantum computation is inherently reversible, methods for the design of
reversible circuits are frequently utilized for this purpose.

This led to the development of �rst CAD methods e.g. for the synthesis of
reversible circuits [4�12], the corresponding mapping to quantum circuits [13�
16], or design schemes which directly address quantum circuit synthesis [17�21].
Besides that, physical constraints and how to already consider them during the
design phase has received increasing attention. In particular, the satisfaction of



so-called nearest neighbor constraints was an objective of recent developments.
Here, the interaction distance between the involved qubits is limited and it is
required that computations are performed between adjacent, i.e. nearest neigh-
bor, qubits only. Corresponding CAD-methods addressing this restriction have
been proposed e.g. in [22�27].

In this work, we consider the global reordering scheme as employed in [22, 26,
27] whose main idea is to determine a qubit order which � applied through the
entire circuit � yields the smallest nearest neighbor costs. This often provides the
basis for further optimization steps and, hence, constitutes an important part
of nearest neighbor optimization. However, since determining the best possible
qubit order requires the consideration of n! possible permutations (where n is
the number of qubits), existing solutions either

� apply a heuristic which aims for generating a single, dedicated permutation
only which, in many cases, is far from optimal or

� apply an exact approach which guarantees an optimal solution but su�ers
from the underlying complexity.

Motivated by this, we are considering the research question how to optimize
heuristic global reordering in order to generate nearly-optimal results while, at
the same time, remaining e�cient. To this end, we propose the utilization of Per-
mutation Decision Diagrams (πDDs, [28]) � a data-structure for the e�cient rep-
resentation and manipulation of sets of permutations. Using πDDs it is possible
to consider all permutations at once in an e�cient fashion and to subsequently
reduce them with respect to the nearest neighbor constraints. This provides an
ideal compromise between the existing solutions which directly worked towards
a single permutation only and, hence, likely excluded better options or had to
deal with an ine�cient handling of the complexity. Experimental evaluations
con�rm the bene�ts of the proposed approach: In all cases, optimal or almost
optimal results are generated in a fraction of the runtime needed for the exact
approach.

The remainder of this work is structured as follows: Section 2 reviews the
background on quantum circuits and nearest neighbor optimization, while Sec-
tion 3 reviews the corresponding optimization methods. These sections build the
motivation of the proposed approach whose general idea is afterwards presented
in Section 4. Then, details on the solution are presented in Section 5. Finally,
experimental results are reported and discussed in Section 6 and the paper is
concluded in Section 7.

2 Background

In order to keep the paper self-contained, this section brie�y reviews the quantum
circuit model usually applied in electronic design automation and provides the
background on nearest neighbor optimization.

2.1 Quantum Circuits

In contrast to conventional computation, quantum computation [1] works on
qubits instead of bits. A qubit is a two level quantum system, described by a



Table 1. Quantum gates
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two dimensional complex Hilbert space. The two orthogonal quantum states |0〉
≡
(
1
0

)
and |1〉 ≡

(
0
1

)
are used to represent the Boolean values 0 and 1. Any state

of a qubit may be written as |x〉 = α |0〉+ β |1〉 , where the amplitudes α and β
are complex numbers with |α|2 + |β|2 = 1.

Operations on n-qubits states are performed through multiplication of appro-
priate 2n × 2n unitary matrices. Thus, each quantum computation is inherently
reversible but manipulates qubits rather than pure logic values. At the end of
the computation, a qubit can be measured. Then, depending on the current state
of the qubit, either a 0 (with probability of |α|2) or a 1 (with probability of |β|2)
returns. After the measurement, the state of the qubit is destroyed.

Quantum computations are usually represented by quantum circuits. Here,
the respective qubits are denoted by solid circuit lines. Operations are repre-
sented by quantum gates. Table 1 lists common quantum gates together with
the corresponding unitary matrices describing their operation. In order to per-
form operations on more than one qubit, controlled quantum gates are applied.
These gates are composed of a target line |t〉 and a control line |c〉 and realize
the unitary operation represented by the matrix

M =

(
1 0 0 0

0 1 0 0

0 0 U0 0

)
where U denotes the operation applied to the target line. In the remainder of
this work, we use the following formal notation:

De�nition 1. A quantum circuit is denoted by the cascade G = g1g2 . . . g|G| (in
�gures drawn from left to right), where |G| denotes the total number of gates.
The number of qubits and, thus, the number of circuit lines is denoted by n. The
costs of a quantum circuit (also denoted as quantum cost) are de�ned by the
number |G| of gates.
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Fig. 1. Quantum circuit

Example 1. Fig. 1 shows a quantum circuit composed of n = 2 circuit lines
and |G| = 3 gates. This circuit gets |11〉 as input and transforms the qubits
as indicated at the circuit signals.

In the following, we do not focus on the dedicated functionality of a quantum
circuit, but on the structure and whether it satis�es nearest neighbor constraints
(as reviewed next). To this end, we omit unary quantum gates (as they are
irrelevant for nearest neighbor optimization) and generically denote quantum

gates using the notation U .

2.2 Nearest Neighbor Optimization

In the recent years, researchers proposed several physical realizations for quan-
tum circuits. This led to a better understanding of their physical limitations
and constraints, e.g. with respect to the interaction distance, decoherence time,
or scaling (see e.g. [29�31]). Besides that, so-called nearest neighbor constraints
have to be satis�ed for many quantum circuit architectures. This particularly
holds for technologies based on proposals for ion traps [32�34], nitrogen-vacancy
centers in diamonds [35, 36], quantum dots emitting linear cluster states linked
by linear optics [37], laser manipulated quantum dots in a cavity [38], and super-
conducting qubits [39, 40]. Here, nearest neighbor constraints limit the interac-
tion distance between gate qubits and require that computations are performed
between adjacent, i.e. nearest neighbor, qubits only.

In order to formalize this restriction for electronic design automation, a cor-
responding metric representing the costs of a quantum circuit to become nearest
neighbor compliant has been introduced in [22]. There, the authors de�ned the
Nearest Neighbor Cost as follows.

De�nition 2. Assume a 2-qubit quantum gate g(c, t) with a control at the line
c and a target at line t where c and t are numerical indices holding 0 ≤ c, t < n.
Then, the Nearest Neighbor Cost (NNC) for g is calculated using the distance
between the target and the control line. More precisely,

NNC(g) = |c− t| − 1.

As a result, a single control gate g is termed nearest neighbor compliant if
NNC(g) = 0. 1-qubit gates are assumed to have NNC of 0. The resulting NNC
for a complete quantum circuit is de�ned by the sum of the NNC of its gates:

NNC(G) =
∑
g∈G

NNC(g).
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Fig. 2. Establishing nearest neighbor compliance

A quantum circuit G is termed nearest neighbor compliant if NNC(G) = 0,
i.e. if all quantum gates are 1-qubit gates or adjacent 2-qubit gates.

Example 2. Consider the circuit G depicted in Fig. 2(a). Gates are denoted
by G = g1. . .g7 from the left to the right. As can be seen, gates g2, g6, as
well as g7 are non-adjacent and have nearest neighbor costs of NNC(g2) = 1,
NNC(g6) = 2, as well as NNC(g7) = 2, respectively. Hence, the entire circuit
has nearest neighbor costs of NNC(G) = 5.

A naive way to make an arbitrarily given quantum circuit nearest neighbor
compliant is to modify it by additional SWAP gates.

De�nition 3. A SWAP gate is a quantum gate g(qi, qj) including two qubits qi,
qj and maps (q0, . . . , qi, qj , . . . , qn−1) to (q0, . . . , qj , qi, . . . , qn−1). That is, a SWAP
gate realizes the exchange of two quantum values (in �gures drawn using two con-
nected × symbols).

These SWAP gates allow for making all control lines and target lines adjacent
and, by this, help to satisfy the nearest neighbor constraint. More precisely, a
cascade of adjacent SWAP gates can be inserted in front of each gate g with non-
adjacent circuit lines in order to shift the control line of g towards the target
line, or vice versa, until they are adjacent. Afterwards, SWAP gates are inserted
to restore the original ordering of circuit lines.

Example 3. Consider again the circuit depicted in Fig. 2(a). In order to make
this circuit nearest neighbor compliant, SWAP gates in front and after all these
gates are inserted as shown in Fig. 2(b).

3 Motivation

Adding SWAP gates in a naive fashion as reviewed in the previous section is a
simple way of transforming any given quantum circuit into a nearest neighbor



compliant version (in fact, this can be conducted in linear time with respect
to the number of gates). But the insertion of SWAP gates obviously increases
the quantum cost: For each non-adjacent gate, 2 · (|t − c| − 1) SWAP gates are
additionally inserted to the circuit. In order to minimize these additional costs,
researchers investigated how to reduce the number of SWAP gate insertions in
order to make a given quantum circuit nearest neighbor compliant.

A broad variety of di�erent approaches has been presented for this purpose �
including solutions relying on templates [22], local and global reordering strate-
gies [22], dedicated data-structures [23�25], etc. Also exact approaches, i.e. so-
lutions guaranteeing the minimal number of SWAP gate insertions, have been
proposed [26, 27]. The work published in [27] provides a good overview. All these
approaches particularly focus on how to properly reorder the qubits in the circuit
so that the respective interaction distance (and, hence, the number of required
SWAP gates) is reduced.

In this work, we consider global reordering schemes, where the main objective
is to determine a qubit order which � applied through the entire circuit � yields
the smallest nearest neighbor costs. Results obtained from global reordering
often provide the basis for further optimization steps and, hence, constitute an
important part of nearest neighbor optimization. Unfortunately, determining the
best qubit order requires the explicit checking of all possible qubit permutations.
For a circuit with n qubits, this yields n! possible combinations � a signi�cant
complexity. Two complementary solutions to deal with this complexity represent
the current state-of-the-art:

The �rst one is a heuristic solution proposed in [22]. Here, a good permuta-
tion is determined by calculating the contribution of each circuit line of a given
quantum circuit G. Therefore, for each 2-qubit gate g of G with control line at
position c and target line at position t, the NNC value (see Def. 2) is calculated.
Afterwards, this value is added to variables impc and impt which are used to
store the �impacts� of the circuit lines c and t on the total NNC, respectively.
More precisely, the impact impi of the i

th circuit line (0 ≤ i < n) is calculated
by

impi =
∑

g(c,t)∈G | c=i ∨ t=i

NNC(g).

Using these impacts, the algorithm selects the circuit line with the greatest
value and permutes it with the middle circuit line. If the selected line already
is the middle line, the one with the next greatest impact is selected. This whole
procedure is repeated until no further improvements are achieved.

The second one is an exact solution proposed in [26, 27], which determines
the best possible permutation. To this end, the underlying design problem is for-
mulated as an optimal linear arrangement problem which, in turn, is formulated
as an instance of pseudo-Boolean Optimization (PBO, see e.g. [41]). By utilizing
corresponding solving engines, the resulting PBO problem is solved.

Example 4. Consider again the circuit depicted in Fig. 2(a). Applying the heuris-
tic of [22], the resulting impacts of the circuits lines are impx1 = 5, impx2 = 0,
impx3 = 1, and impx4 = 4, respectively. Permuting the line order such that the
lines with high impact are located in the middle (descending towards the outer
lines) results in the circuit depicted in Fig. 3(a). Compared to the naive method
(see result depicted in Fig. 2(b)), this reduces the number of required SWAP
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Fig. 3. Global Reordering (applied to the circuit from Fig. 2(a))

gates from 10 to 4. However, signi�cantly further reductions can be achieved
if the best permutation is determined (using the exact solution from [26, 27]).
Then, a circuit as shown in Fig. 3(b) results which reduces the required number
of SWAP gates by another 50% to 2.

Overall, it can be concluded that the heuristic solution provides a very e�-
cient way of further reducing the number of SWAP gates compared to the naive
method. But the obtained results are still far from optimal. In contrast, exact
methods guarantee minimality with respect to the number of additionally re-
quired SWAP gates, but su�er from the signi�cant complexity (and, hence, the
resulting run-time and scalability issues). Motivated by this, we are considering
the research question how to optimize heuristic global reordering in order to
generate nearly-optimal results while, at the same time, remaining scalable to
larger quantum circuits.

4 General Idea

Obviously, considering more permutations � ideally all n! possible ones � will
allow for the determination of a qubit order that is better than the one deter-
mined by the heuristic solution reviewed above. But then, the question remains
how to deal with the corresponding complexity? In this work, we are propos-
ing a scheme which utilizes the compact representation of Permutation Decision
Diagrams (πDDs) for this purpose. In this section, we �rst review the basics of
πDDs. Afterwards, we describe the general idea of utilizing this data-structure
and illustrate its potential by means of an example.

4.1 Permutation Decision Diagrams (πDDs)

A πDD is a graph which represents a set of permutations and is based on trans-
position decomposition [28]. Compared to other representation relying on arrays,
πDDs can represent sets of permutations more compactly. Besides that, πDDs
are also capable of e�ciently conducting operations on the represented sets of
permutations. Before introducing the structure of πDDs in detail, we describe
the decomposition of a permutation called transposition decomposition.

Let π = π1 . . . πn be a permutation of length n. Then, π can be considered
as a numerical sequence satisfying πi ∈ {1 . . . , n} for 1 ≤ i ≤ n and πi 6= πj for
1 ≤ i < j ≤ n. A transposition τi,j is a swap between two elements πi and πj .
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Fig. 5. A πDD repr. {2431, 4231, 1423}

Any permutation of length n can be uniquely decomposed into a sequence of at
most n− 1 transpositions by conducting the following two steps:

1. Prepare the initial permutation 1 . . . n.
2. For each k running from n to 1, move πk to the k-th position by applying a

transposition.

Example 5. Consider a permutation π = 2431 to be decomposed. First, we start
with the initial permutation 1234 and set k = n = 4. Since πk = 1, we swap the
�rst element and the fourth element (τ1,4) and obtain 4231. The third element 3
is at the same position as given by π, i.e. no transposition is needed for k = 3.
Finally, since π2 = 4 is at the �rst position of 4231, we swap the �rst element and
the second element (τ1,2) and obtain 2431 = π. By this, the given permutation
π = 2431 is uniquely decomposed into a transposition sequence τ1,4τ1,2.

Following this transposition decomposition, a πDD is de�ned as follows:

De�nition 4. A πDD is a rooted and directed graph consisting of �ve types of
components: internal nodes, 0-edges, 1-edges, the 0-sink, and the 1-sink. Fig. 5
shows an example of a πDD. Each internal node is labeled with a transposition,
and has exactly two out-going edges: a 0-edge and a 1-edge. Each path from a root
to the 1-sink corresponds to a permutation held by the πDD as follows: if a 1-edge
originates from a node with label τx,y, the decomposition of the permutation
contains τx,y, while a 0-edge means that the decomposition does not contain τx,y.

In order to make a πDD compact and canonical, we apply the following two
rules called reduction rules (as illustrated in Fig. 4):

� sharing rule: share all nodes which have the same labels and child nodes.
� deleting rule: delete all nodes whose 1-edge points to the 0-sink.

Example 6. Consider the three permutations {2431, 4231, 1423}. The transposi-
tion decomposition easily shows that all these permutations can be realized by
the transpositions τ1,4τ1,2, τ1,4, and τ3,4τ2,3. Hence, all of them can be repre-
sented by the πDD as shown in Fig. 5.

Although the number of πDD nodes is exponential in the length of per-
mutations in the worst case, in many practical cases, it demonstrates a high
compression ratio. For example, Fig. 6 shows an example of an exponentially
compact πDD; it represents a set of 25 permutations with only 5 internal nodes.

A notable feature of the πDD is that it supports e�cient restriction opera-
tions that make a πDD representing a restricted subset from the original πDD.
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Fig. 6. A πDD with 5 nodes representing 25 permutations

An instance of restriction used in the following section is an adjacent restriction;
it makes a πDD that only contains permutations such that two elements a and
b must be adjacent in the permutation.

Since πDD operations are implemented as recursive procedures on a graph,
the computation time of πDD operations depends on the number of πDD nodes,
not on the cardinality of the set represented by a πDD. Hence, if a πDD is
highly compressed and has a small number of nodes, manipulation on a set of
permutations can be e�cient.

4.2 Proposed Exploitation of πDDs

The concept of πDDs allows one to e�ciently represent all n! possible qubit
permutations at once. Based on that, the general idea of the proposed nearest
neighbor optimization is to iteratively reduce this set of permutations to a sub-
set including e�cient permutations only. �E�ciency� is thereby de�ned by the
number of SWAP gates that would be required in order to make a given quan-
tum circuit � whose qubits are aligned according to these permutations � nearest
neighbor compliant. Hence, permutations are removed which would clearly yield
a quantum circuit with high NNC. In the following, the general idea is sketched
by means of an example.

Example 7. For the quantum circuit from Fig. 2(a), a qubit order is to be deter-
mined. To this end, all 4! = 24 possible qubit permutations are considered at the
beginning. Those are e�ciently represented by the πDD depicted in Fig. 7(a).
Now, permutations shall be excluded which are clearly not e�cient. Obviously,
the interactions between qubits x1 and x4 dominates in the circuit from Fig. 2(a).
Accordingly, we are removing all permutations in which these two qubits are not
adjacent. This can easily be employed using πDDs and, eventually, yields to
a total of 12 remaining permutations represented by the structure shown in
Fig. 7(b).

In a similar fashion, further permutations can be removed. This can be con-
tinued until either

� all permutations are excluded, i.e. an empty set results, or
� no further restrictions are left to be considered.
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Fig. 7. Reducing the considered permutations using a πDD representation

In the �rst case, restrictions have to be loosened again � even if this would
yield a quantum circuit which is not nearest neighbor compliant. After all, the
representations is satisfying as many of the restrictions as possible. In the second
case, no further actions are needed. From the resulting subset, the permutation
leading to the lowest NNC is chosen and used in order to realize the circuit.
Again, the example illustrates the issue.

Example 8. Using the subset represented by the πDD shown in Fig. 7(b), another
restriction is employed, namely that qubits x1 and x2 shall be adjacent (this is
motivated by the fact that there are 2 gates in which these two qubits interact).
Applying this restriction yields the πDD shown in Fig. 7(c). Because of the same
reason, x2 and x3 are enforced to be adjacent in the next step (yielding the πDD
shown in Fig. 7(d)). Finally, x1 and x3 is enforced to be adjacent. However,
the last restriction yields a πDD representing the empty set (see Fig. 7(e)).
Because of that, this restriction is waived (i.e. we backtrack to the πDD shown in



Fig. 7(d)). As no further restrictions are left (all qubit interactions of the original
circuit from Fig. 2(a) have been considered), the best permutation regarding its
NNC can be calculated and taken from the resulting πDD (shown in Fig. 7(d)).
This eventually yields the circuit already shown in Fig. 3(b), i.e. the proposed
approach determined a permutation requiring a minimal number of SWAP gates.

Following this scheme aims for keeping permutations that satisfy certain re-
strictions, while excluding those which are identi�ed as non-e�cient (motivated
by the interactions of qubits in the circuit). This is a clear improvement com-
pared to the previously proposed heuristic which directly worked towards a sin-
gle permutation only and, hence, likely excluded better options. The increased
complexity caused by considering and manipulating (sub)sets of permutations is
tackled through the e�cient representation provided by the πDDs. However, the
order in which restrictions are applied (and, hence, permutations are excluded)
still has an e�ect on the determined result. The next section deals with how the
proposed solution handles this ordering problem.

5 Applying Restrictions to the πDDs

As illustrated in the example from above, the interactions between the qubits
provide crucial information on the nearest neighbor compliance of a given per-
mutation. Accordingly, this information builds the basis for deciding what per-
mutations are removed from further consideration. This section describes how
this information is obtained, represented and, eventually, applied to the πDD.

5.1 Obtaining and Weighting Restrictions

In order to store information on the interaction of the qubits (and, eventually,
derive restrictions from it), a pre-process is conducted which traverses the entire
circuit G. For each gate g ∈ G, the corresponding interaction between the in-
volved qubits is determined and stored. This way, an adjacency matrix is built
representing what and how many interactions between qubits are conducted.
More formally:

De�nition 5. For a given quantum circuit G with n qubits, an adjacency ma-
trix A of size n × n represents the number of interactions between all qubits.
Each entry ai,j ∈ A contains the number of interactions between the qubits xi
and xj and between the qubits xj and xi. Since no qubit interacts with itself, all
entries aii are left empty. Furthermore, since A is symmetric, only half of the
entries has to be considered.

Example 9. Consider the quantum circuit from Fig. 8(a). The corresponding
adjacency matrix is shown in Fig. 8(b).

From this representation, the restrictions to be applied to the πDDs can
easily be derived. Each interaction between the qubits xi and xj motivate to
restrict the set of considered permutation to only those in which xi and xj are
adjacent. Moreover, the adjacency matrix can be used to assign a weight to each
restriction. For example, if the qubits xi and xj interact more frequently than
the qubits xk and xl, then the restriction of having (xi,xj) adjacent should be
prioritized to the restriction of having (xk,xl) adjacent.
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R4 (x1,x4) 2
R5 (x4,x5) 1

(c) Derived restrictions

Fig. 8. Obtaining and weighting restrictions from a given circuit

Example 10. From the adjacency matrix shown in Fig. 8(b), restrictions and
their weights as shown in Fig. 8(c) are derived.

5.2 Applying Resulting Restrictions to the πDD

In an ideal scenario, all restrictions derived above should be applied to the πDD.
Then, a subset of permutations would remain in which all qubits that have in-
teractions with each other are adjacent (eventually leading to a nearest neighbor
compliant quantum circuit). However, in most of the cases this would yield an
empty subset of permutations. Hence, a procedure is required deciding which
restrictions are applied and which are not.

The weight which is assigned to each restriction provides an obvious metric
for this purpose. But still, options exists how this metric is utilized. The following
two possible schemes could be applied:

� In a greedy scheme, all restrictions are applied in the order of their weight.
That is, the restriction with the highest weight is considered �rst; after-
wards, the restriction with the second highest weight; and so on. This way,
stronger restrictions are clearly preferred over weaker restrictions. However,
there might be cases in which the application of several restrictions with
a relatively small weight outperforms the application of a single restriction
with a higher weight.

� This motivates the consideration of an advanced scheme which works as fol-
lows: First, a threshold e is de�ned stating the maximum number of restric-
tions which shall be considered together. Then, all possible combinations
of the e restrictions with the highest weight are considered (including all e
restrictions solely as well as all possible supersets of them). The combination
of restrictions which can be applied to the πDD without causing an empty



set of permutations and, additionally, satis�es the highest weight is eventu-
ally chosen. Afterwards, all remaining restrictions are applied following the
greedy scheme.

The two schemes are illustrated by the following example:

Example 11. Consider again the quantum circuit from Fig. 8(a) and the obtained
restrictions as shown in Fig. 8(c). Following the greedy scheme would suggest an
application of R1, followed by R2, R3, R4, and R5. This eventually results in a
set of permutations whose best one would lead to a circuit requiring 10 SWAP
gates.

In contrast, the advance scheme would consider all combinations of the e = 4
restrictions with the highest weight, i.e. {R1}, {R2}, {R3}, {R4}, {R1,R2},
{R1,R3}, {R1,R4}, {R2,R3}, {R2,R4}, {R3,R4}, {R1,R2,R3}, etc. This way it
can be observed that {R1,R2} can be applied together but not {R1,R2,R3}.
Since the combination {R1,R3,R4} (i.e. without R2) yields a higher weight than
all other non-empty combinations, this set of restrictions is applied to the πDD.
Eventually, this results in a quantum circuit requiring 6 SWAP gates.

6 Experimental Evaluation

The solution proposed in the previous sections has been implemented on top
of the πDD-package introduced in [28]. Based on this implementation, the per-
formance of the proposed solution has been evaluated using benchmark quan-
tum circuits taken from RevLib [42]. Afterwards, the obtained results have been
compared to results obtained by the previously proposed solutions reviewed in
Section 3. This section summarizes and discusses the obtained results. All eval-
uations have been conducted on an Intel i3-4030U machine with 1.9 GHz and
4 GB of memory.

Table 2 summarizes the obtained results. The �rst columns provide the name
of the considered benchmarks as well as its respective number of lines (n) and
gates (|G|). Afterwards, the number of required SWAP gates are reported if
the naive method (reviewed in Section 2.2), the heuristic and exact method
(reviewed in Section 3), as well as the proposed method (introduced in Sections 4
and 5 and following the advanced scheme) are applied. In the case of the exact
method as well as the proposed method, the required runtime (in CPU seconds)
is additionally provided (both, the naive and heuristic approach where able to
determine all results in negligible time, i.e. in less than a second). Finally, the last
columns provide a comparison of the results obtained by the proposed approach
to the respective numbers from the naive, heuristic, and exact approaches.

The results clearly con�rm that the proposed approach ful�lls the promises
discussed in Section 3. By considering sets of permutations (rather than con-
structing a single one only), signi�cantly better results compared to the previ-
ously proposed heuristic can be obtained. Improvements of more than 66% in the
best case are reported. Moreover, the proposed solution is capable of generating
optimal or almost optimal results (see comparison of the proposed approach to
the exact solution). This quality is achieved by requiring only a fraction of the
runtime needed for the exact approach thus far. That is, πDDs as utilized in this
work allow for determining results of optimal or almost optimal quality while,
at the same time, they handle the underlying complexity in an e�cient fashion.



Table 2. Experimental evaluation

Previously proposed solutions Prop. solution Comparison
Naive Heuristic Exact (wrt. number of SWAP gates)

Benchmark n |G| SWAPs SWAPs SWAPs Time SWAPs Time to naive to heuristic to exact
3_17_13 3 13 6 6 4 0.1 6 0.1 1.00 1.00 1.50
decod24-v3_46 4 9 18 8 4 0.1 4 0.1 0.22 0.50 1.00
hwb4_52 4 23 28 18 18 0.1 18 0.1 0.64 1.00 1.00
4gt11_84 5 7 14 6 2 0.1 2 0.1 0.14 0.33 1.00
4gt13-v1_93 5 16 52 20 6 0.1 8 0.1 0.15 0.40 1.33
4mod5-v1_23 5 24 50 30 30 0.1 30 0.1 0.60 1.00 1.00
hwb5_55 5 106 230 146 114 0.1 120 0.1 0.52 0.82 1.05
hwb6_58 6 146 358 316 290 0.1 294 0.2 0.82 0.93 1.01
rd32-v0_67 4 8 10 4 4 1.1 4 0.1 0.40 1.00 1.00
rd53_135 7 78 264 194 136 1.8 136 0.3 0.52 0.70 1.00
ham7_104 7 87 204 162 140 1.9 140 0.3 0.69 0.86 1.00
urf2_152 8 25150 90676 83152 71280 22.0 73932 0.4 0.82 0.89 1.04
urf1_149 9 57770 245604 200804 179832 231.3 203836 0.6 0.83 1.02 1.13
urf5_158 9 51380 229568 206288 176284 247.0 179348 0.6 0.78 0.87 1.02
rd73_140 10 76 238 190 150 1579.4 178 0.9 0.75 0.94 1.19
sys6-v0_144 10 62 192 116 114 1586.4 118 0.8 0.61 1.02 1.04
Shor3 10 2076 6710 6710 4802 1846.2 4802 0.8 0.72 0.72 1.00
sym9_148 10 4452 16848 13656 10984 2415.1 12128 0.7 0.72 0.89 1.10
urf3_155 10 132340 663156 491356 453368 3023.6 458476 0.9 0.69 0.93 1.01
4_49_17 4 30 42 32 32 0.1 0.76 1.00
4gt10-v1_81 5 36 82 74 32 0.1 0.39 0.43
4gt5_75 5 22 40 40 22 0.1 0.55 0.55
4mod7-v0_95 5 40 72 68 44 0.1 0.61 0.65
aj-e11_165 5 59 118 70 52 0.1 0.44 0.74
alu-v4_36 5 31 70 70 34 0.1 0.49 0.49
4gt12-v1_89 6 52 172 76 52 0.1 0.30 0.68
4gt4-v0_80 6 43 66 58 44 0.1 0.67 0.76
mod5adder_128 6 81 188 148 120 0.2 0.64 0.81
mod8-10_177 6 108 218 166 156 0.1 0.72 0.94
hwb7_62 8 2659 8824 7876 7596 0.4 0.86 0.96
hwb8_118 9 16608 57378 51998 50184 0.6 0.87 0.97
hwb9_123 10 20405 84630 78266 74086 0.8 0.88 0.95
cycle10_2_110 12 1212 5272 5272 4500 1.6 0.85 0.85
plus63mod4096_163 13 29019 155668 144752 144752 1.9 0.93 1.00
0410184_169 14 82 48 68 48 13.0 1.00 0.71
plus127mod8192_162 14 65455 376734 362986 349236 14.6 0.93 0.96
plus63mod8192_164 14 37101 211276 182856 178122 5.6 0.84 0.97
ham15_108 15 458 3108 2772 1438 2.5 0.46 0.52
rd84_142 15 112 468 424 348 4.7 0.74 0.82
urf6_160 15 53700 478068 427344 257604 10.0 0.54 0.60
cnt3-5_180 16 125 400 400 356 63.9 0.89 0.89

n: Number of lines |G|: Number of gates Time: Runtime in CPU seconds
SWAPs: Number of SWAP gates required when applying the naive method (reviewed in Section 2.2), the heuristic

and exact method (reviewed in Section 3), as well as the proposed method (introduced in Sections 4 and 5)
No runtime is provided for the naive and the heuristic method (since all results were obtained in negligible time)

7 Conclusions
In this work, we considered nearest neighbor optimization of quantum circuits
using πDDs. Since πDDs allow for an e�cient representation and manipulation
of sets of permutations, they allow for considering all possible permutations at
once and an subsequent reduction of them with respect to the nearest neigh-
bor constraints. This way, an ideal compromise between existing solutions is
provided. Experimental evaluations con�rmed the e�ciency and quality of the
obtained results.
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