Chair for Design Automation TUM School of Computation, Information and Technology Technical University of Munich

The Munich Quantum Toolkit (MQT)

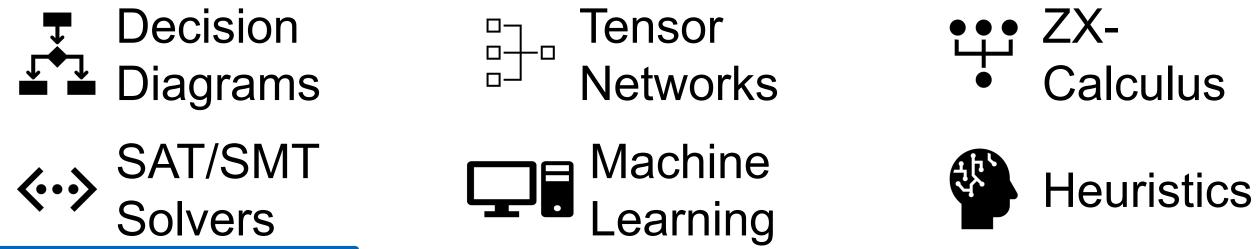
Design Automation Tools and Software for Quantum Computing

Robert Wille and Team

Contact: robert.wille@tum.de

https://www.cda.cit.tum.de/research/quantum/mqt

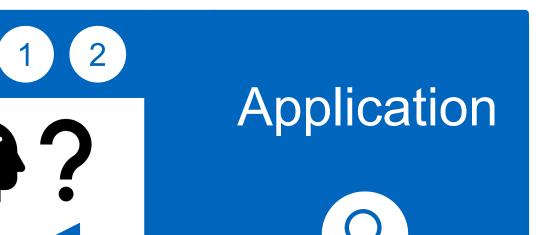
Abstract


Quantum computers are becoming a reality. But

Data Structures / Core Methods 11 12 13 14 15 16

In order to tackle the complexity of important design tasks, the MQT utilizes efficient data structures (e.g., for the representation and manipulation of quantum states and operations) as well as dedicated core methods (e.g., allowing to realize optimal methods) including:

designing applications for these devices requires automated, efficient, and user-friendly software tools that cater to the needs of end-users, engineers, and physicists at every level of the design flow. The Munich Quantum Toolkit (MQT) is a collection of design automation tools and software for quantum computing developed at the Chair for Design Automation at the Technical University of Munich. This flyer provides an overview of the provided solutions. For each step in the design flow, numbered nodes indicate available correspondingly the software repositories (summarized on the back of this flyer). All software is available as open-source.


MUNICH UANTUM

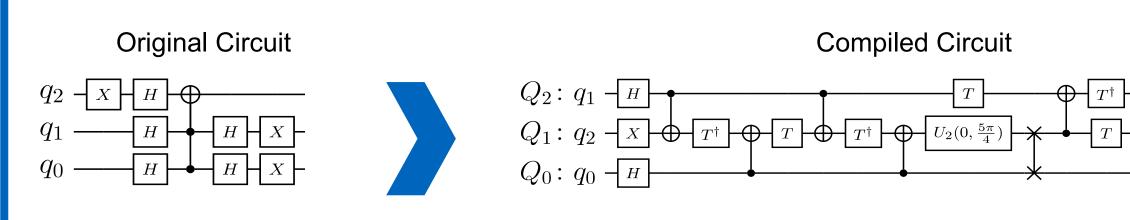
For performance reasons, all tools are implemented in C++ with convenient Python bindings and compatibility to other tools.

Application

Workflow from classical problem to quantum solution

Simulation

Simulation of gate-based quantum circuits


Automated problem encoding, execution, and decoding

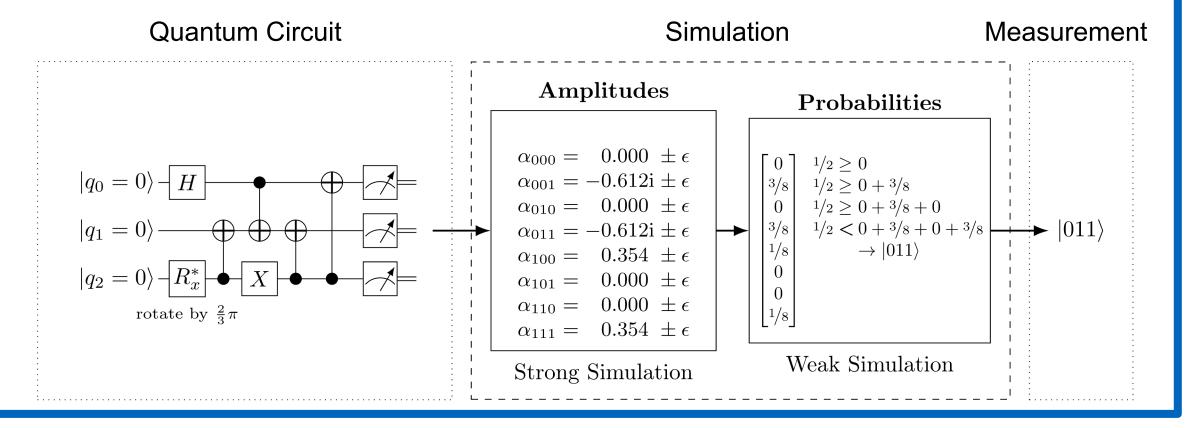
Compilation

4 5 6 7 8

87

- Determining good compilation options
- Reversible circuit/quantum oracle synthesis
- Technology-specific mapping
 - Quantum circuit mapping/SWAP gate insertion
 - Shuttling for Trapped lons
- Multi-level (Qudit) Compilation

Error Correction


Compilation

Verification

*** * * ***

based on decision diagrams

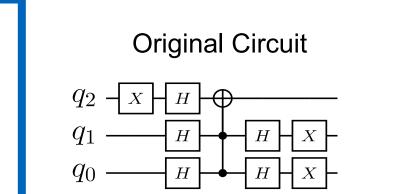
Includes sampling, noise-aware simulation, Hybrid Schrödinger Feynman approaches, approximation strategies, etc.

Verification

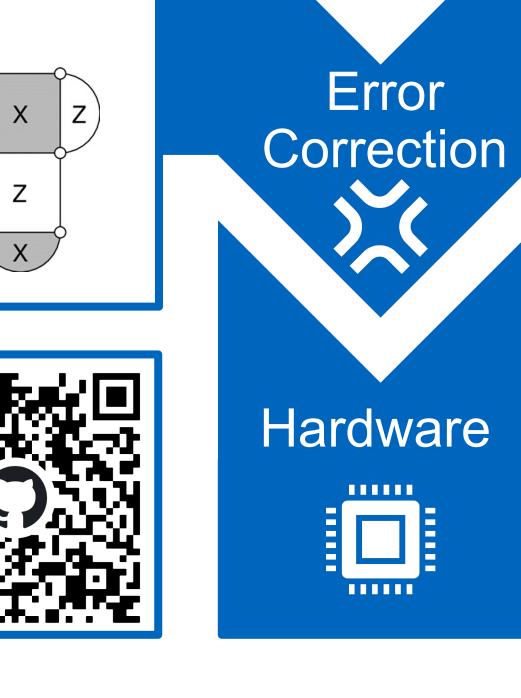
9

Compiled Circuit

 $Q_1: q_2 - X \oplus T^{\dagger} \oplus T \oplus T^{\dagger} \oplus U_2(0, \frac{5\pi}{4})$


3

Equivalence checking of quantum circuits

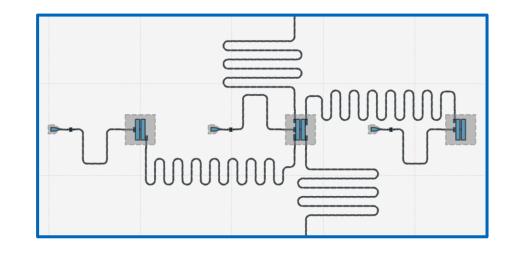

 $Q_2: q_1 - H$

 $Q_0: q_0 - H$

Verification of compilation results

- Decoding algorithms
- Automated code construction and numerical simulations

(10)


Ζ

Х

Z

Hardware

Application-specific physical design for superconducting platform

tools are available All open-source impleas mentations on GitHub.

Chair for Design Automation TUM School of Computation, Information and Technology **Technical University of Munich**

1 MQT ProblemSolver **2 MQT Bench** Application **Application** A Tool for Solving Problems Using A Quantum Circuit Benchmark Suite Quantum Computing www.cda.cit.tum.de/mqtbench 220-11 github.com/cda-tum/mqtbench github.com/cda-tum/mqtproblemsolver **3 MQT DDSIM 4 MQT Predictor** Simulation Compilation A Tool for Classical Quantum Circuit A Tool for Determining Good Quantum **Circuit Compilation Options** Simulation based on Decision Diagrams 85 brit $\left[\begin{array}{c} \mathbf{q}_{\mathbf{0}} \\ \mathbf{0} \end{array}\right]$ github.com/cda-tum/ddsim github.com/cda-tum/mqtpredictor

5 MQT SyReC

A Tool for the Synthesis of Reversible Circuits/Quantum Computing Oracles

github.com/cda-tum/syrec

7 MQT IonShuttler

A Tool for Generating Shuttling Schedules for QCCD Architectures

github.com/cda-tum/ion-shuttler

MQT QCEC

A Tool for Quantum Circuit Equivalence Checking

6 MQT QMAP Compilation

 \mathcal{Q}

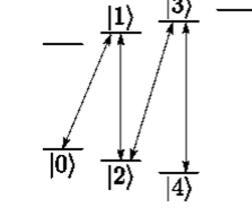
20

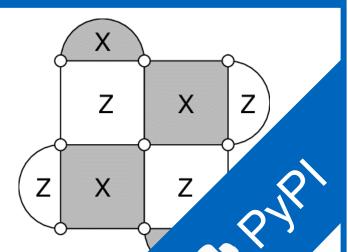
Compilation

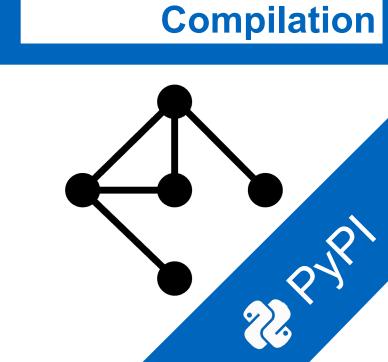
Verification

A Tool for Quantum Circuit Mapping

github.com/cda-tum/qmap


8 MQT Qudits

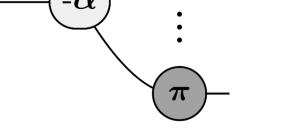

A Tool for Compiling High-Dimensional Quantum Systems


github.com/cda-tum/qudit-compilation github.com/cda-tum/qudit-entanglement-compilation

10 MQT QECC

A Tool for Quantum Error Correcting Codes

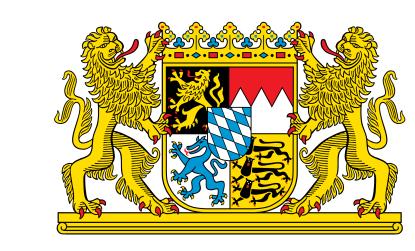
github.com/cda-tum/qcec


github.com/cda-tum/qecc

QECC

11 MQT DDPackage	Data Structures	12 MQT DDVis	Data Structures
A Decision Diagram Package for Quantum Computing	q_1 $1/\sqrt{2}$ $1/\sqrt{2}$	A Web-Application visualizing Decision Diagrams for Quantum Computing	
github.com/cda-tum/dd_package	$\begin{pmatrix} q_0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} q_0 \\ 0 \end{pmatrix}$	www.cda.cit.tum.de/app/ddvis github.com/cda-tum/ddvis	
¹³ MQT QFR	Data Structures	MQT Logic Blocks	Data Structures
An Intermediate Representation for Quantum Circuits and Computations		An Interface Library for SAT/SMT Abstractions	
github.com/cda-tum/qfr		github.com/cda-tum/logicblocks	
15 MQT ZX	Data Structures	16 MQT QuSAT	Core Methods
A ZX-Calculus Package	π	A Tool for Encoding Quantum $F \wedge (C \wedge T)$ Computing using Satisfiability	$(x_1 \wedge \neg x_2)$

github.com/cda-tum/zx



Testing (SAT) Techniques

github.com/cda-tum/qusat

European Research Council Established by the European Commission

