
Control
• Job Configuration
• Job Submission
• Result Retrieval

Management Interface
QDMI – Quantum Device

Hardware-Software Interface for the
Munich Quantum Software Stack (MQSS)

Query
• Device Properties
• Site Properties
• Operation Properties

Driver

Clients

Devices

Session
• User Management
• Access Control
• Resource Management

A

B B implements
the interface

A consumes,

Technical Contact
Lukas Burgholzer: lukas.burgholzer@tum.de
Yannick Stade: yannick.stade@tum.de

General Contact
Robert Wille, Martin Schulz, Jorge Echavarria
mqss@munich-quantum-valley.de

Device-agnostic
Compilation Passes

Quantum
Circuit

Execution Flow Device 1

Device 2

Device 3

Device-specific
Compilation Passes

Q
DM

I

FoMaC Libraries
Information Flow

Results

The Quantum Device Management Interface (QDMI) is
the central part of the Munich Quantum Software
Stack (MQSS)—a sophisticated software stack to con-
nect end users to a wide range of possible quantum
backends. It enables the submission to and the control
of gate-based quantum systems and enables software
tools to automatically retrieve and adapt to changing
physical characteristics and constraints of different
platforms. QDMI strives to connect the software and
hardware developers, mediating between their com-
peting interests, bridging between technologies, and

eventually providing corresponding figures of merits
and constraints to be considered. QDMI is, therefore,
the method of choice for integrating new platforms
into the MQSS and for software tools to query infor-
mation from these platforms. QDMI is provided as a
header-only library in C to allow fast integration into
an HPC environment and consists of three different
entities: clients, devices, and a driver. These entities
interact via two interfaces: client and device interface,
each of which is subdivided into three parts: session,
query, and job interface.

munich-quantum-software-stack.github.io/QDMI

What is MQSS?

MQSS stands for Munich Quantum Software Stack, which is a
project of the Munich Quantum Valley (MQV) initiative and is jointly
developed by the Leibniz Supercomputing Centre (LRZ) and the
Chairs for Design Automation (CDA), and for Computer Architecture
and Parallel Systems (CAPS) at TUM. It provides a comprehensive
compilation and runtime infrastructure for on-premise and remote
quantum devices, support for modern compilation and optimization
techniques, and enables both current and future high-level abstrac-
tions for quantum programming. Within the MQV, a concrete in-
stance of the MQSS is deployed at the LRZ for the MQV, serving as a
single access point to all of its quantum devices via multiple com-
patible access paths, including a web portal, command line access
via web credentials as well as the option for hybrid access with tight
integration with LRZ's HPC systems.

What is QDMI?

QDMI, or Quantum Device Management Interface, serves as the
communication interface between software within the MQSS and
the quantum hardware connected to the MQSS. The aim is to pro-
vide a standard way to communicate with quantum resources that
can be widely used by the whole quantum community.

Where is the code?

The code is publicly available as open-source and hosted on GitHub
at github.com/Munich-Quantum-Software-Stack/QDMI. An exten-
sive documentation with examples, templates, and rationales can
be found at munich-quantum-software-stack.github.io/QDMI.

Who is using QDMI?

QDMI will be the default communication channel within the MQSS,
meaning all hardware and software tools integrated into the MQSS
will have to support QDMI. Moreover, platforms implementing
QDMI can also be seamlessly integrated in other software stacks
understanding QDMI, as can software tools interfacing with QDMI
for platform feedback.

Under which license is QDMI released?

QDMI is released under the Apache License v2.0 with LLVM Excep-
tions. Any contribution to the project is assumed to be under the
same license.

Why is it written in C and not in Python?

The interface is written in C to allow close integration within the
MQSS and fulfill the performance as well as stability requirements
needed for production systems, in particular as we scale quantum
systems. Further, this enables a clean integration into existing and
well-established system software stacks, including those for HPC.

Can I still integrate my Python code?

Python natively allows calling C APIs. So while it might not be as
straightforward as the usage from C/C++, it is definitely possible.
However, we generally do expect Python-based programming ap-
proaches to be used as front-ends, feeding into a natively implem-
ented compiler infrastructure, which then relies on QDMI. This is
very similar to how Python is used in many other parts of high-per-
formance computing.

/* get list of all device’s sites */ size_t size = 0;
int ret = QDMI_device_query_device_property(device, QDMI_DEVICE_PROPERTY_SITES, 0, nullptr, &size);
throw_if_error(ret, "Failed to retrieve the sites list’s size.");
std::vector<QDMI_Site> sites(size / sizeof(QDMI_Site));
ret = QDMI_device_query_device_property(device, QDMI_DEVICE_PROPERTY_SITES, size, sites.data(), nullptr);
throw_if_error(ret, "Failed to retrieve the sites list.");
/* query device’s coupling map */ size = 0;
ret = QDMI_device_query_device_property(device, QDMI_DEVICE_PROPERTY_COUPLINGMAP, 0, nullptr, &size);
throw_if_error(ret, "Failed to query the coupling map’s size.");
const auto num_pairs = size / sizeof(QDMI_Site) / 2;
std::vector<std::pair<QDMI_Site, QDMI_Site>> coupling_pairs(num_pairs);
ret = QDMI_device_query_device_property(device, QDMI_DEVICE_PROPERTY_COUPLINGMAP, size,
 coupling_pairs.data(), nullptr);
throw_if_error(ret, "Failed to query the coupling map.");

A QDMI device must implement all functions defined in the control and query interface. The QDMI driver loads all available devices and
provides device handles to the QDMI clients. Those clients can use that device handle to create and submit a job, retrieve result data, or
query information about the device. Following the querying of the device’s coupling map from the client side is demonstrated.

The following code shows a snippet from an example device implementation. Here, the function to query device properties is shown.
Devices prefix every QDMI function with their own prefix, in this example EX. The types of sites (also operations and jobs) are implemented
by the device. The code assumes, that all device’s sites are contained in some array named SITES.

Example Client

Example Device

Technical Contact
Lukas Burgholzer: lukas.burgholzer@tum.de
Yannick Stade: yannick.stade@tum.de

General Contact
Robert Wille, Martin Schulz, Jorge Echavarria
mqss@munich-quantum-valley.de

int EX_ QDMI_device_session_query_device_property(EX_QDMI_Device_Session session,
 const QDMI_Device_Property prop, const size_t size, void *value, size_t *size_ret) {
 if (/* invalid argument condition */) return QDMI_ERROR_INVALIDARGUMENT;
 ADD_STRING_PROPERTY(QDMI_DEVICE_PROPERTY_NAME, ”Example Device", prop, size, value, size_ret)
 ADD_SINGLE_VALUE_PROPERTY(QDMI_DEVICE_PROPERTY_QUBITSNUM, size_t, 2, prop, size, value, size_ret)
 ADD_LIST_PROPERTY(QDMI_DEVICE_PROPERTY_COUPLINGMAP, EX_QDMI_Site,
 ((EX_QDMI_Site[]){SITES[0], SITES[1], SITES[1], SITES[0]}), 4, prop, size, value, size_ret)
 return QDMI_ERROR_NOTSUPPORTED;
}

