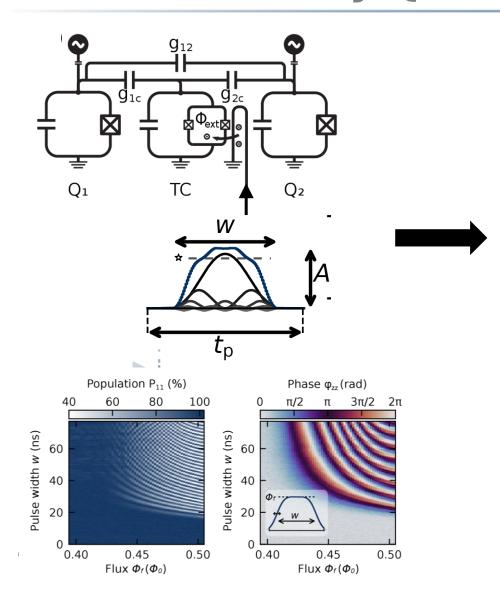


Closed-Loop Optimization for High-Fidelity Quantum Gate Calibration

N.J. Glaser, F.A. Roy, I. Tsitsilin, L. Koch, N. Bruckmoser, J. Schirk, J.H. Romeiro, G.B.P. Huber F. Wallner, M. Singh, A. Marx, L. Södergren, C.M.F. Schneider, M. Werninghaus, and S. Filipp



Technical University of Munich, TUM School of Natural Sciences, Physics Department Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften

Closed-Loop Optimization for High-Fidelity Quantum Gate Calibration

- Robust calibration of controlled-Z gate.
- Minimize leakage and phase errors via advanced pulse shaping.
- Strongly correlated parameters of control pulse trajectory.
- Mitigate hardware model mismatches by performing closedloop optimization directly on superconducting qubit hardware.
- Achieving high-fidelity CZ gates with > 99.9% fidelity using compact parametrizations (e.g., 64 ns Fourier-series pulse with 7 parameters)

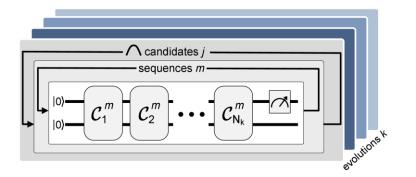
Closed-Loop Optimization for High-Fidelity Quantum Gate Calibration

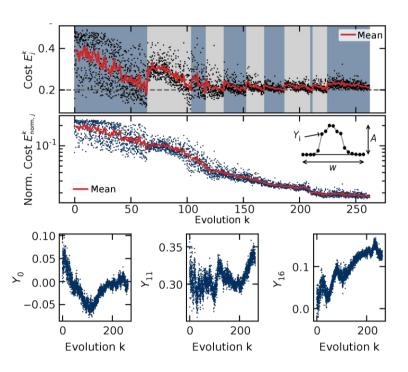
CMA-ES Optimization

Efficiently calibrates multi-parameter pulse shapes directly on quantum hardware. (Other optimizers available)

ORBIT Randomized Benchmarking

Randomized Clifford sequences with fixed depth, provide universal and realistic cost function.


Adaptive sensitivity of Cost Function


Maintains high sensitivity across fidelity regimes during optimization by dynamically tuning RB gate-error-sensitivity via adaptation of Clifford sequence depth.

Performance optimized for **WMIQC** and **LabOneQ**.

